000 | 03254nam a22003855i 4500 | ||
---|---|---|---|
001 | 292631 | ||
003 | MX-SnUAN | ||
005 | 20160429155033.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2014 gw | o |||| 0|eng d | ||
020 |
_a9783319015866 _99783319015866 |
||
024 | 7 |
_a10.1007/9783319015866 _2doi |
|
035 | _avtls000346040 | ||
039 | 9 |
_a201509030911 _bVLOAD _c201405050328 _dVLOAD _y201402070847 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA299.6-433 | |
100 | 1 |
_aAlmezel, Saleh. _eeditor. _9324566 |
|
245 | 1 | 0 |
_aTopics in Fixed Point Theory / _cedited by Saleh Almezel, Qamrul Hasan Ansari, Mohamed Amine Khamsi. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2014. |
|
300 |
_axI, 304 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _a1 Introduction to Metric Fixed Point Theory. M.A. Khamsi -- 2 Banach Contraction Principle and its Generalizations. Abdul Latif -- 3 Ekeland’s Variational Principle and Its Extensions with Applications. Qamrul Hasan Ansari -- 4 Fixed Point Theory in Hyperconvex Metric Spaces. Rafael Espínola and Aurora Fernández-León.- 5 An Introduction to Fixed Point Theory in Modular Function Spaces. W. M. Kozlowski.- 6 Fixed Point Theory in Ordered Sets from the Metric Point of View. M. Z. Abu-Sbeih and M. A. Khamsi.- 7 Some Fundamental Topological Fixed Point Theorems for Set-Valued Maps. Hichem Ben-El-Mechaiekh.- 8 Some Iterative Methods for Fixed Point Problems. Q. H. Ansari and D. R. Sahu -- Index. | |
520 | _aThe purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland’s variational principle. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aAnsari, Qamrul Hasan. _eeditor. _9324567 |
|
700 | 1 |
_aKhamsi, Mohamed Amine. _eeditor. _9324568 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783319015859 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-01586-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c292631 _d292631 |