000 02498nam a22003735i 4500
001 292779
003 MX-SnUAN
005 20170705134227.0
007 cr nn 008mamaa
008 150903s2012 sz | o |||| 0|eng d
020 _a9783034801638
_99783034801638
024 7 _a10.1007/9783034801638
_2doi
035 _avtls000345267
039 9 _a201509030346
_bVLOAD
_c201405050318
_dVLOAD
_y201402061332
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA401-425
100 1 _aMazzucchelli, Marco.
_eautor
_9324839
245 1 0 _aCritical Point Theory for Lagrangian Systems /
_cby Marco Mazzucchelli.
264 1 _aBasel :
_bSpringer Basel,
_c2012.
300 _axii, 187 páginas 1 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v293
500 _aSpringer eBooks
505 0 _a1 Lagrangian and Hamiltonian systems -- 2 Functional setting for the Lagrangian action -- 3 Discretizations -- 4 Local homology and Hilbert subspaces -- 5 Periodic orbits of Tonelli Lagrangian systems -- A An overview of Morse theory.-Bibliography -- List of symbols -- Index.
520 _aLagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783034801621
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0163-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c292779
_d292779