000 03334nam a22003855i 4500
001 292785
003 MX-SnUAN
005 20160429155041.0
007 cr nn 008mamaa
008 150903s2013 sz | o |||| 0|eng d
020 _a9783034805483
_99783034805483
024 7 _a10.1007/9783034805483
_2doi
035 _avtls000345345
039 9 _a201509030411
_bVLOAD
_c201405050319
_dVLOAD
_y201402061334
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA403-403.3
100 1 _aCruz-Uribe, David V.
_eautor
_9324852
245 1 0 _aVariable Lebesgue Spaces :
_bFoundations and Harmonic Analysis /
_cby David V. Cruz-Uribe, Alberto Fiorenza.
264 1 _aBasel :
_bSpringer Basel :
_bImprint: Birkhäuser,
_c2013.
300 _aIx, 312 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aApplied and Numerical Harmonic Analysis
500 _aSpringer eBooks
505 0 _a 1 Introduction -- 2 Structure of Variable Lebesgue Spaces -- 3 The Hardy-Littlewood Maximal Operator.- 4 Beyond Log-Hölder Continuity -- 5 Extrapolation in the Variable Lebesgue Spaces -- 6 Basic Properties of Variable Sobolev Spaces -- Appendix: Open Problems -- Bibliography -- Symbol Index -- Author Index -- Subject Index.        .
520 _aThis book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aFiorenza, Alberto.
_eautor
_9324853
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783034805476
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0548-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c292785
_d292785