000 | 03334nam a22003855i 4500 | ||
---|---|---|---|
001 | 292785 | ||
003 | MX-SnUAN | ||
005 | 20160429155041.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 sz | o |||| 0|eng d | ||
020 |
_a9783034805483 _99783034805483 |
||
024 | 7 |
_a10.1007/9783034805483 _2doi |
|
035 | _avtls000345345 | ||
039 | 9 |
_a201509030411 _bVLOAD _c201405050319 _dVLOAD _y201402061334 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA403-403.3 | |
100 | 1 |
_aCruz-Uribe, David V. _eautor _9324852 |
|
245 | 1 | 0 |
_aVariable Lebesgue Spaces : _bFoundations and Harmonic Analysis / _cby David V. Cruz-Uribe, Alberto Fiorenza. |
264 | 1 |
_aBasel : _bSpringer Basel : _bImprint: Birkhäuser, _c2013. |
|
300 |
_aIx, 312 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aApplied and Numerical Harmonic Analysis | |
500 | _aSpringer eBooks | ||
505 | 0 | _a 1 Introduction -- 2 Structure of Variable Lebesgue Spaces -- 3 The Hardy-Littlewood Maximal Operator.- 4 Beyond Log-Hölder Continuity -- 5 Extrapolation in the Variable Lebesgue Spaces -- 6 Basic Properties of Variable Sobolev Spaces -- Appendix: Open Problems -- Bibliography -- Symbol Index -- Author Index -- Subject Index. . | |
520 | _aThis book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aFiorenza, Alberto. _eautor _9324853 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783034805476 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0548-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c292785 _d292785 |