000 | 02998nam a22003855i 4500 | ||
---|---|---|---|
001 | 292797 | ||
003 | MX-SnUAN | ||
005 | 20160429155041.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2010 au | o |||| 0|eng d | ||
020 |
_a9783211993149 _99783211993149 |
||
024 | 7 |
_a10.1007/9783211993149 _2doi |
|
035 | _avtls000345518 | ||
039 | 9 |
_a201509030413 _bVLOAD _c201405050321 _dVLOAD _y201402061338 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA564-609 | |
100 | 1 |
_aRobbiano, Lorenzo. _eeditor. _9324875 |
|
245 | 1 | 0 |
_aApproximate Commutative Algebra / _cedited by Lorenzo Robbiano, John Abbott. |
264 | 1 |
_aVienna : _bSpringer Vienna, _c2010. |
|
300 |
_axiv, 227 páginas 15 ilustraciones, 4 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aTexts and Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria, _x0943-853X |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aFrom Oil Fields to Hilbert Schemes -- Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials -- Towards Geometric Completion of Differential Systems by Points -- Geometric Involutive Bases and Applications to Approximate Commutative Algebra -- Regularization and Matrix Computation in Numerical Polynomial Algebra -- Ideal Interpolation: Translations to and from Algebraic Geometry -- An Introduction to Regression and Errors in Variables from an Algebraic Viewpoint -- ApCoA = Embedding Commutative Algebra into Analysis -- Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares. | |
520 | _aApproximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aAbbott, John. _eeditor. _9324876 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783211993132 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-211-99314-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c292797 _d292797 |