000 | 02990nam a22003855i 4500 | ||
---|---|---|---|
001 | 292904 | ||
003 | MX-SnUAN | ||
005 | 20160429155045.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 sz | o |||| 0|eng d | ||
020 |
_a9783034802123 _99783034802123 |
||
024 | 7 |
_a10.1007/9783034802123 _2doi |
|
035 | _avtls000345275 | ||
039 | 9 |
_a201509030346 _bVLOAD _c201405050318 _dVLOAD _y201402061332 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA319-329.9 | |
100 | 1 |
_aBrudnyi, Alexander. _eautor _9325057 |
|
245 | 1 | 0 |
_aMethods of Geometric Analysis in Extension and Trace Problems : _bVolume 2 / _cby Alexander Brudnyi, Yuri Brudnyi. |
264 | 1 |
_aBasel : _bSpringer Basel, _c2012. |
|
300 |
_axx, 416 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aMonographs in Mathematics ; _v103 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPart 3. Lipschitz Extensions from Subsets of Metric Spaces -- Chapter 6. Extensions of Lipschitz Maps -- Chapter 7. Simultaneous Lipschitz Extensions -- Chapter 8. Linearity and Nonlinearity -- Part 4. Smooth Extension and Trace Problems for Functions on Subsets of Rn -- Chapter 9. Traces to Closed Subsets: Criteria, Applications -- Chapter 10. Whitney Problems -- Bibliography -- Index. | |
520 | _aThis is the second of a two-volume work presenting a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers the development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific, these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the work is also unified by the geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and Coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aBrudnyi, Yuri. _eautor _9325058 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783034802116 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0212-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c292904 _d292904 |