000 03287nam a22003855i 4500
001 293067
003 MX-SnUAN
005 20160429155051.0
007 cr nn 008mamaa
008 150903s2009 sz | o |||| 0|eng d
020 _a9783034601269
_99783034601269
024 7 _a10.1007/9783034601269
_2doi
035 _avtls000345170
039 9 _a201509030410
_bVLOAD
_c201405050317
_dVLOAD
_y201402061330
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA331-355
100 1 _aGohberg, Israel.
_eautor
_9324723
245 1 0 _aHolomorphic Operator Functions of One Variable and Applications :
_bMethods from Complex Analysis in Several Variables /
_cby Israel Gohberg, Jürgen Leiterer.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aOperator Theory: Advances and Applications ;
_v192
500 _aSpringer eBooks
505 0 _aElementary properties of holomorphic functions -- Solution of and applications -- Splitting and factorization with respect to a contour -- The Rouché theorem for operator functions -- Multiplicative cocycles ( -cocycles) -- Families of subspaces -- Plemelj-Muschelishvili factorization -- Wiener-Hopf operators, Toeplitz operators and factorization -- Multiplicative cocycles with restrictions ( -cocycles) -- Generalized interpolation problems -- Holomorphic equivalence, linearization and diagonalization.
520 _aThis is a book on holomorphic operator functions of a single variable and applications, which is focused on the relations between local and global theories. It is based on methods and technics of complex analysis of several variables. The first part of the theory starts with a straightforward generalization of some results from the basics of analysis of scalar functions of one complex variable. In the second part, which is the main part of the theory, results are obtained by methods and tools adapted from complex analysis of functions of several variables. We have in mind the theory of holomorphic cocycles (fiber bundles) with values in infinite-dimensional non-commutative groups. As a rule, these results do not appear in traditional complex analysis of one variable, not even for matrix valued cocycles. The third part consists of applications to operator theory. Here applications are presented for holomorphic families of subspaces and Plemelj-Muschelishvili factorization. The fourth part presents a generalization of the theory of cocycles to cocycles with restrictions. This part contains also applications to interpolation problems, to the problem of holomorphic equivalence and diagonalization.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLeiterer, Jürgen.
_eautor
_9325369
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783034601252
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0346-0126-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293067
_d293067