000 | 03287nam a22003855i 4500 | ||
---|---|---|---|
001 | 293067 | ||
003 | MX-SnUAN | ||
005 | 20160429155051.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 sz | o |||| 0|eng d | ||
020 |
_a9783034601269 _99783034601269 |
||
024 | 7 |
_a10.1007/9783034601269 _2doi |
|
035 | _avtls000345170 | ||
039 | 9 |
_a201509030410 _bVLOAD _c201405050317 _dVLOAD _y201402061330 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA331-355 | |
100 | 1 |
_aGohberg, Israel. _eautor _9324723 |
|
245 | 1 | 0 |
_aHolomorphic Operator Functions of One Variable and Applications : _bMethods from Complex Analysis in Several Variables / _cby Israel Gohberg, Jürgen Leiterer. |
264 | 1 |
_aBasel : _bBirkhäuser Basel, _c2009. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aOperator Theory: Advances and Applications ; _v192 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aElementary properties of holomorphic functions -- Solution of and applications -- Splitting and factorization with respect to a contour -- The Rouché theorem for operator functions -- Multiplicative cocycles ( -cocycles) -- Families of subspaces -- Plemelj-Muschelishvili factorization -- Wiener-Hopf operators, Toeplitz operators and factorization -- Multiplicative cocycles with restrictions ( -cocycles) -- Generalized interpolation problems -- Holomorphic equivalence, linearization and diagonalization. | |
520 | _aThis is a book on holomorphic operator functions of a single variable and applications, which is focused on the relations between local and global theories. It is based on methods and technics of complex analysis of several variables. The first part of the theory starts with a straightforward generalization of some results from the basics of analysis of scalar functions of one complex variable. In the second part, which is the main part of the theory, results are obtained by methods and tools adapted from complex analysis of functions of several variables. We have in mind the theory of holomorphic cocycles (fiber bundles) with values in infinite-dimensional non-commutative groups. As a rule, these results do not appear in traditional complex analysis of one variable, not even for matrix valued cocycles. The third part consists of applications to operator theory. Here applications are presented for holomorphic families of subspaces and Plemelj-Muschelishvili factorization. The fourth part presents a generalization of the theory of cocycles to cocycles with restrictions. This part contains also applications to interpolation problems, to the problem of holomorphic equivalence and diagonalization. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aLeiterer, Jürgen. _eautor _9325369 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783034601252 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0346-0126-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c293067 _d293067 |