000 03930nam a22004095i 4500
001 293072
003 MX-SnUAN
005 20160429155052.0
007 cr nn 008mamaa
008 150903s2011 sz | o |||| 0|eng d
020 _a9783034800877
_99783034800877
024 7 _a10.1007/9783034800877
_2doi
035 _avtls000345247
039 9 _a201509030411
_bVLOAD
_c201405050318
_dVLOAD
_y201402061332
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aArendt, Wolfgang.
_eautor
_9325378
245 1 0 _aVector-valued Laplace Transforms and Cauchy Problems :
_bSecond Edition /
_cby Wolfgang Arendt, Charles J.K. Batty, Matthias Hieber, Frank Neubrander.
264 1 _aBasel :
_bSpringer Basel,
_c2011.
300 _axii, 540 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMonographs in Mathematics ;
_v96
500 _aSpringer eBooks
505 0 _aPreface to the First Edition -- Preface to the Second Edition -- I Laplace Transforms and Well-Posedness of Cauchy Problems -- 1 The Laplace Integral -- 2 The Laplace Transform -- 3 Cauchy Problems -- II Tauberian Theorems and Cauchy Problems -- 4 Asymptotics of Laplace Transforms -- 5 Asymptotics of Solutions of Cauchy Problems -- III Applications and Examples -- 6 The Heat Equation -- 7 The Wave Equation -- 8 Translation Invariant Operators on Lp(Rn) -- A Vector-valued Holomorphic Functions -- B Closed Operators -- C Ordered Banach Spaces -- D Banach Spaces which Contain c0 -- E Distributions and Fourier Multipliers -- Bibliography -- Notation -- Index.
520 _aThis monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis. The authors have succeeded admirably in bringing together a wealth of recent material, much of which appears in book form for the first time. This authoritative work is likely to become a standard reference on both the Laplace transform and its applications to the abstract Cauchy problem. … The book is an excellent textbook as well. Proofs are always transparent and complete, and many topics that could have been considered as background material are covered as well. All this makes the text very accessible and self-contained. Applications to concrete differential operators are given throughout the text. Each chapter ends with historical and bibliographical comments. … In summary, this book will be of interest to a wide audience of (functional) analysts and it should have a place in every mathematics library. Warmly recommended! Jan van Neerven, Nieuw Archief voor Wiskunde, No. 3, 2003
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aBatty, Charles J.K.
_eautor
_9325379
700 1 _aHieber, Matthias.
_eautor
_9325292
700 1 _aNeubrander, Frank.
_eautor
_9325380
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783034800860
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0087-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293072
_d293072