000 03959nam a22003975i 4500
001 293113
003 MX-SnUAN
005 20160429155053.0
007 cr nn 008mamaa
008 150903s2012 sz | o |||| 0|eng d
020 _a9783034802604
_99783034802604
024 7 _a10.1007/9783034802604
_2doi
035 _avtls000345286
039 9 _a201509030411
_bVLOAD
_c201405050319
_dVLOAD
_y201402061333
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA174-183
100 1 _aBenson, David J.
_eautor
_9325442
245 1 0 _aRepresentations of Finite Groups: Local Cohomology and Support /
_cby David J. Benson, Srikanth Iyengar, Henning Krause.
264 1 _aBasel :
_bSpringer Basel,
_c2012.
300 _ax, 105 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aOberwolfach Seminars ;
_v43
500 _aSpringer eBooks
505 0 _aPreface -- 1 Monday -- 1.1 Overview -- 1.2 Modules over group algebras -- 1.3 Triangulated categories -- 1.4 Exercises -- 2 Tuesday -- 2.1 Perfect complexes over commutative rings -- 2.2 Brown representability and localization -- 2.3 The stable module category of a finite group -- 2.4 Exercises -- 3 Wednesday -- 3.1 -- 3.2 Koszul objects and support -- 3.3 The homotopy category of injectives -- 3.4 Exercises -- 4 Thursday -- 4.1 Stratifying triangulated categories -- 4.2 Consequences of stratification -- 4.3 The Klein four group -- 4.4 Exercises -- 5 Friday -- 5.1 Localising subcategories of D(A) -- 5.2 Elementary abelian 2-groups -- 5.3 Stratification for arbitrary finite groups -- 5.4 Exercises -- A Support for modules over commutative rings -- Bibliography -- Index.
520 _aThe seminar focuses on a recent solution, by the authors, of a long standing problem concerning the stable module category (of not necessarily finite dimensional representations) of a finite group. The proof draws on ideas from commutative algebra, cohomology of groups, and stable homotopy theory. The unifying theme is a notion of support which provides a geometric approach for studying various algebraic structures. The prototype for this has been Daniel Quillen’s description of the algebraic variety corresponding to the cohomology ring of a finite group, based on which Jon Carlson introduced support varieties for modular representations. This has made it possible to apply methods of algebraic geometry to obtain representation theoretic information. Their work has inspired the development of analogous theories in various contexts, notably modules over commutative complete intersection rings and over cocommutative Hopf algebras. One of the threads in this development has been the classification of thick or localizing subcategories of various triangulated categories of representations. This story started with Mike Hopkins’ classification of thick subcategories of the perfect complexes over a commutative Noetherian ring, followed by a classification of localizing subcategories of its full derived category, due to Amnon Neeman. The authors have been developing an approach to address such classification problems, based on a construction of local cohomology functors and support for triangulated categories with ring of operators. The book serves as an introduction to this circle of ideas.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aIyengar, Srikanth.
_eautor
_9325443
700 1 _aKrause, Henning.
_eautor
_9325444
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783034802598
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0260-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293113
_d293113