000 03115nam a22003735i 4500
001 293230
003 MX-SnUAN
005 20160429155057.0
007 cr nn 008mamaa
008 150903s2011 sz | o |||| 0|eng d
020 _a9783034801164
_99783034801164
024 7 _a10.1007/9783034801164
_2doi
035 _avtls000345254
039 9 _a201509030411
_bVLOAD
_c201405050318
_dVLOAD
_y201402061332
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA403.5-404.5
100 1 _aWong, M. W.
_eautor
_9324985
245 1 0 _aDiscrete Fourier Analysis /
_cby M. W. Wong.
264 1 _aBasel :
_bSpringer Basel,
_c2011.
300 _aviii, 177 páginas 1 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aPseudo-Differential Operators, Theory and Applications ;
_v5
500 _aSpringer eBooks
505 0 _aPreface -- The Finite Fourier Transform -- Translation-Invariant Linear Operators -- Circulant Matrices -- Convolution Operators -- Fourier Multipliers -- Eigenvalues and Eigenfunctions -- The Fast Fourier Transform -- Time-Frequency Analysis -- Time-Frequency Localized Bases -- Wavelet Transforms and Filter Banks -- Haar Wavelets -- Daubechies Wavelets -- The Trace -- Hilbert Spaces -- Bounded Linear Operators -- Self-Adjoint Operators -- Compact Operators -- The Spectral Theorem -- Schatten–von Neumann Classes -- Fourier Series -- Fourier Multipliers on S1 -- Pseudo-Differential Operators on S1 -- Pseudo-Differential Operators on Z -- Bibliography -- Index.
520 _aThis textbook presents basic notions and techniques of Fourier analysis in discrete settings. Written in a concise style, it is interlaced with remarks, discussions and motivations from signal analysis.   The first part is dedicated to topics related to the Fourier transform, including discrete time-frequency analysis and discrete wavelet analysis. Basic knowledge of linear algebra and calculus is the only prerequisite. The second part is built on Hilbert spaces and Fourier series and culminates in a section on pseudo-differential operators, providing a lucid introduction to this advanced topic in analysis. Some measure theory language is used, although most of this part is accessible to students familiar with an undergraduate course in real analysis.   Discrete Fourier Analysis is aimed at advanced undergraduate and graduate students in mathematics and applied mathematics. Enhanced with exercises, it will be an excellent resource for the classroom as well as for self-study.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783034801157
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0116-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293230
_d293230