000 | 03249nam a22003855i 4500 | ||
---|---|---|---|
001 | 293233 | ||
003 | MX-SnUAN | ||
005 | 20160429155057.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 sz | o |||| 0|eng d | ||
020 |
_a9783034803519 _99783034803519 |
||
024 | 7 |
_a10.1007/9783034803519 _2doi |
|
035 | _avtls000345294 | ||
039 | 9 |
_a201509030411 _bVLOAD _c201405050319 _dVLOAD _y201402061333 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA241-247.5 | |
100 | 1 |
_aGetz, Jayce. _eautor _9325674 |
|
245 | 1 | 0 |
_aHilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change / _cby Jayce Getz, Mark Goresky. |
264 | 1 |
_aBasel : _bSpringer Basel, _c2012. |
|
300 |
_axiii, 256 páginas 5 ilustraciones, 1 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v298 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aChapter 1. Introduction -- Chapter 2. Review of Chains and Cochains -- Chapter 3. Review of Intersection Homology and Cohomology -- Chapter 4. Review of Arithmetic Quotients -- Chapter 5. Generalities on Hilbert Modular Forms and Varieties -- Chapter 6. Automorphic vector bundles and local systems -- Chapter 7. The automorphic description of intersection cohomology -- Chapter 8. Hilbert Modular Forms with Coefficients in a Hecke Module -- Chapter 9. Explicit construction of cycles -- Chapter 10. The full version of Theorem 1.3 -- Chapter 11. Eisenstein Series with Coefficients in Intersection Homology -- Appendix A. Proof of Proposition 2.4 -- Appendix B. Recollections on Orbifolds -- Appendix C. Basic adèlic facts -- Appendix D. Fourier expansions of Hilbert modular forms -- Appendix E. Review of Prime Degree Base Change for GL2 -- Bibliography. | |
520 | _aIn the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aGoresky, Mark. _eautor _9325675 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783034803502 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0351-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c293233 _d293233 |