000 03249nam a22003855i 4500
001 293233
003 MX-SnUAN
005 20160429155057.0
007 cr nn 008mamaa
008 150903s2012 sz | o |||| 0|eng d
020 _a9783034803519
_99783034803519
024 7 _a10.1007/9783034803519
_2doi
035 _avtls000345294
039 9 _a201509030411
_bVLOAD
_c201405050319
_dVLOAD
_y201402061333
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA241-247.5
100 1 _aGetz, Jayce.
_eautor
_9325674
245 1 0 _aHilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change /
_cby Jayce Getz, Mark Goresky.
264 1 _aBasel :
_bSpringer Basel,
_c2012.
300 _axiii, 256 páginas 5 ilustraciones, 1 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v298
500 _aSpringer eBooks
505 0 _aChapter 1. Introduction -- Chapter 2. Review of Chains and Cochains -- Chapter 3. Review of Intersection Homology and Cohomology -- Chapter 4. Review of Arithmetic Quotients -- Chapter 5. Generalities on Hilbert Modular Forms and Varieties -- Chapter 6. Automorphic vector bundles and local systems -- Chapter 7. The automorphic description of intersection cohomology -- Chapter 8. Hilbert Modular Forms with Coefficients in a Hecke Module -- Chapter 9. Explicit construction of cycles -- Chapter 10. The full version of Theorem 1.3 -- Chapter 11. Eisenstein Series with Coefficients in Intersection Homology -- Appendix A. Proof of Proposition 2.4 -- Appendix B. Recollections on Orbifolds -- Appendix C. Basic adèlic facts -- Appendix D. Fourier expansions of Hilbert modular forms -- Appendix E. Review of Prime Degree Base Change for GL2 -- Bibliography.
520 _aIn the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGoresky, Mark.
_eautor
_9325675
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783034803502
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0351-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293233
_d293233