000 04048nam a22003975i 4500
001 293276
003 MX-SnUAN
005 20160429155059.0
007 cr nn 008mamaa
008 150903s2014 sz | o |||| 0|eng d
020 _a9783034805100
_99783034805100
024 7 _a10.1007/9783034805100
_2doi
035 _avtls000345333
039 9 _a201509030411
_bVLOAD
_c201405050319
_dVLOAD
_y201402061334
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA614-614.97
100 1 _aNazaikinskii, Vladimir.
_eautor
_9325733
245 1 4 _aThe Localization Problem in Index Theory of Elliptic Operators /
_cby Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin.
264 1 _aBasel :
_bSpringer Basel :
_bImprint: Birkhäuser,
_c2014.
300 _aviii, 117 páginas 38 ilustraciones, 1 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aPseudo-Differential Operators, Theory and Applications ;
_v10
500 _aSpringer eBooks
505 0 _aPreface -- Introduction -- 0.1 Basics of Elliptic Theory -- 0.2 Surgery and the Superposition Principle -- 0.3 Examples and Applications -- 0.4 Bibliographical Remarks -- Part I: Superposition Principle -- 1 Superposition Principle for the Relative Index -- 1.1 Collar Spaces -- 1.2 Proper Operators and Fredholm Operators -- 1.3 Superposition Principle -- 2 Superposition Principle for K-Homology -- 2.1 Preliminaries -- 2.2 Fredholm Modules and K-Homology -- 2.3 Superposition Principle -- 2.4 Fredholm Modules and Elliptic Operators -- 3 Superposition Principle for KK-Theory -- 3.1 Preliminaries -- 3.2 Hilbert Modules, Kasparov Modules, and KK -- 3.3 Superposition Principle -- Part II: Examples -- 4 Elliptic Operators on Noncompact Manifolds -- 4.1 Gromov–Lawson Theorem -- 4.2 Bunke Theorem -- 4.3 Roe’s Relative Index Construction -- 5 Applications to Boundary Value Problems -- 5.1 Preliminaries -- 5.2 Agranovich–Dynin Theorem -- 5.3 Agranovich Theorem -- 5.4 Bojarski Theorem and Its Generalizations -- 5.5 Boundary Value Problems with Symmetric Conormal Symbol -- 6 Spectral Flow for Families of Dirac Type Operators -- 6.1 Statement of the Problem -- 6.2 Simple Example -- 6.3 Formula for the Spectral Flow -- 6.4 Computation of the Spectral Flow for a Graphene Sheet -- Bibliography.
520 _aThis book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of important new problems in index theory. So far, the localization principle has scarcely been covered in journal papers. The present book is intended to fill this gap. Both the general localization principle and its applications to specific problems, old and new, are covered. Concisely and clearly written, this monograph includes numerous figures helping the reader to visualize the material. The Localization Problem in Index Theory of Elliptic Operators will be of interest to researchers as well as graduate and postgraduate students specializing in differential equations and related topics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSchulze, Bert-Wolfgang.
_eautor
_9324962
700 1 _aSternin, Boris.
_eautor
_9325734
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783034805094
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-0348-0510-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293276
_d293276