000 02950nam a22003735i 4500
001 293419
003 MX-SnUAN
005 20170705134227.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540268772
_99783540268772
024 7 _a10.1007/b138233
_2doi
035 _avtls000346753
039 9 _a201509030433
_bVLOAD
_c201405070510
_dVLOAD
_y201402070904
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ334-342
100 1 _aHutter, Marcus.
_eautor
_9325991
245 1 0 _aUniversal Artificial Intellegence :
_bSequential Decisions Based on Algorithmic Probability /
_cby Marcus Hutter.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _axx, 278 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aTexts in Theoretical Computer Science An EATCS Series
500 _aSpringer eBooks
505 0 _aShort Tour Through the Book -- Simplicity & Uncertainty -- Universal Sequence Prediction -- Agents in Known Probabilistics Environments -- The Universal Algorithmic Agent AIXI -- Important Environmental Classes -- Computational Aspects -- Discussion.
520 _aDecision Theory = Probability + Utility Theory + + Universal Induction = Ockham + Bayes + Turing = = A Unified View of Artificial Intelligence This book presents sequential decision theory from a novel algorithmic information theory perspective. While the former is suited for active agents in known environments, the latter is suited for passive prediction in unknown environments. The book introduces these two well-known but very different ideas and removes the limitations by unifying them to one parameter-free theory of an optimal reinforcement learning agent embedded in an arbitrary unknown environment. Most if not all AI problems can easily be formulated within this theory, which reduces the conceptual problems to pure computational ones. Considered problem classes include sequence prediction, strategic games, function minimization, reinforcement and supervised learning. The discussion includes formal definitions of intelligence order relations, the horizon problem and relations to other approaches to AI. One intention of this book is to excite a broader AI audience about abstract algorithmic information theory concepts, and conversely to inform theorists about exciting applications to AI.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540221395
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138233
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293419
_d293419