000 | 03052nam a22003735i 4500 | ||
---|---|---|---|
001 | 293505 | ||
003 | MX-SnUAN | ||
005 | 20160429155109.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 gw | o |||| 0|eng d | ||
020 |
_a9783540269786 _99783540269786 |
||
024 | 7 |
_a10.1007/b138400 _2doi |
|
035 | _avtls000346793 | ||
039 | 9 |
_a201509030433 _bVLOAD _c201405070511 _dVLOAD _y201402070905 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aStraumann, Daniel. _eautor _9326158 |
|
245 | 1 | 0 |
_aEstimation in Conditionally Heteroscedastic Time Series Models / _cby Daniel Straumann. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2005. |
|
300 |
_axvI, 228 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aLecture Notes in Statistics, _x0930-0325 ; _v181 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aSome Mathematical Tools -- Financial Time Series: Facts and Models -- Parameter Estimation: An Overview -- Quasi Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models: A Stochastic Recurrence Equations Approach -- Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models -- Quasi Maximum Likelihood Estimation in a Generalized Conditionally Heteroscedastic Time Series Model with Heavy—tailed Innovations -- Whittle Estimation in a Heavy—tailed GARCH(1,1) Model. | |
520 | _aIn his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540211358 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138400 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c293505 _d293505 |