000 | 03180nam a22004935i 4500 | ||
---|---|---|---|
001 | 293661 | ||
003 | MX-SnUAN | ||
005 | 20160429155115.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 gw | o |||| 0|eng d | ||
020 |
_a9783540269014 _99783540269014 |
||
024 | 7 |
_a10.1007/b138260 _2doi |
|
035 | _avtls000346767 | ||
039 | 9 |
_a201509030400 _bVLOAD _c201405070511 _dVLOAD _y201402070905 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aHD30.23 | |
100 | 1 |
_aKuhn, Daniel. _eautor _9326468 |
|
245 | 1 | 0 |
_aGeneralized Bounds for Convex Multistage Stochastic Programs / _cby Daniel Kuhn ; edited by M. Beckmann, H. P. Künzi, G. Fandel, W. Trockel, A. Basile, A. Drexl, H. Dawid, K. Inderfurth, W. Kürsten, U. Schittko. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2005. |
|
300 |
_axI, 190 páginas 21 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aLecture Notes in Economics and Mathematical Systems, _x0075-8442 ; _v548 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aBasic Theory of Stochastic Optimization -- Convex Stochastic Programs -- Barycentric Approximation Scheme -- Extensions -- Applications in the Power Industry -- Conclusions. | |
520 | _aThis book investigates convex multistage stochastic programs whose objective and constraint functions exhibit a generalized nonconvex dependence on the random parameters. Although the classical Jensen and Edmundson-Madansky type bounds or their extensions are generally not available for such problems, tight bounds can systematically be constructed under mild regularity conditions. A distinct primal-dual symmetry property is revealed when the proposed bounding method is applied to linear stochastic programs. Exemplary applications are studied to assess the performance of the theoretical concepts in situations of practical relevance. It is shown how market power, lognormal stochastic processes, and risk-aversion can be properly handled in a stochastic programming framework. Numerical experiments show that the relative gap between the bounds can typically be reduced to a few percent at reasonable problem dimensions. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aBeckmann, M. _eeditor. _9326469 |
|
700 | 1 |
_aKünzi, H. P. _eeditor. _9326470 |
|
700 | 1 |
_aFandel, G. _eeditor. _9326471 |
|
700 | 1 |
_aTrockel, W. _eeditor. _9326472 |
|
700 | 1 |
_aBasile, A. _eeditor. _9326473 |
|
700 | 1 |
_aDrexl, A. _eeditor. _9326474 |
|
700 | 1 |
_aDawid, H. _eeditor. _9326475 |
|
700 | 1 |
_aInderfurth, K. _eeditor. _9326476 |
|
700 | 1 |
_aKürsten, W. _eeditor. _9326477 |
|
700 | 1 |
_aSchittko, U. _eeditor. _9326478 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540225409 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138260 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c293661 _d293661 |