000 02736nam a22003735i 4500
001 293784
003 MX-SnUAN
005 20160429155120.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540269168
_99783540269168
024 7 _a10.1007/b138291
_2doi
035 _avtls000346774
039 9 _a201509031100
_bVLOAD
_c201405070511
_dVLOAD
_y201402070905
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aWildi, Marc.
_eautor
_9326736
245 1 0 _aSignal Extraction :
_bEfficient Estimation, ‘Unit Root'-Tests and Early Detection of Turning Points /
_cby Marc Wildi.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _axI, 279 páginas 80 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Economics and Mathematical Systems,
_x0075-8442 ;
_v547
500 _aSpringer eBooks
505 0 _aTheory -- Model-Based Approaches -- QMP-ZPC Filters -- The Periodogram -- Direct Filter Approach (DFA) -- Finite Sample Problems and Regularity -- Empirical Results -- Empirical Comparisons : Mean Square Performance -- Empirical Comparisons : Turning Point Detection -- Conclusion.
520 _aThe book provides deep insights into the signal extraction problem - especially at the boundary of a sample, where asymmetric filters must be used - and how to solve it optimally. The traditional model-based approach (TRAMO/SEATS or X-12-ARIMA) is an inefficient estimation method because it relies on one-step ahead forecasting performances (of a model) whereas the signal extraction problem implicitly requires good multi-step ahead forecasts also. Unit roots are important properties of the input signal because they generate a set of constraints for the best extraction filter. Since traditional tests essentially rely on one-step ahead forecasting performances, new tests are presented here which implicitly account for multi-step ahead forecasting performances too. The gain in efficiency obtained by the new estimation method is analyzed in great detail, using simulated data as well as 'real world' time series.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540229353
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138291
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293784
_d293784