000 | 03472nam a22003735i 4500 | ||
---|---|---|---|
001 | 293883 | ||
003 | MX-SnUAN | ||
005 | 20160429155124.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2014 gw | o |||| 0|eng d | ||
020 |
_a9783319031491 _99783319031491 |
||
024 | 7 |
_a10.1007/9783319031491 _2doi |
|
035 | _avtls000346366 | ||
039 | 9 |
_a201509030915 _bVLOAD _c201405050334 _dVLOAD _y201402070856 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aAhmed, S. Ejaz. _eautor _9326933 |
|
245 | 1 | 0 |
_aPenalty, Shrinkage and Pretest Strategies : _bVariable Selection and Estimation / _cby S. Ejaz Ahmed. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2014. |
|
300 |
_aIx, 115 páginas 6 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringerBriefs in Statistics, _x2191-544X |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Estimation Strategies -- Improved Estimation Strategies in Normal and Poisson Models -- Pooling Data: Making Sense or Folly -- Estimation Strategies in Multiple Regression Models -- Estimation Strategies in Partially Linear Models -- Estimation Strategies in Poisson Regression Models. | |
520 | _aThe objective of this book is to compare the statistical properties of penalty and non-penalty estimation strategies for some popular models. Specifically, it considers the full model, submodel, penalty, pretest and shrinkage estimation techniques for three regression models before presenting the asymptotic properties of the non-penalty estimators and their asymptotic distributional efficiency comparisons. Further, the risk properties of the non-penalty estimators and penalty estimators are explored through a Monte Carlo simulation study. Showcasing examples based on real datasets, the book will be useful for students and applied researchers in a host of applied fields. The book’s level of presentation and style make it accessible to a broad audience. It offers clear, succinct expositions of each estimation strategy. More importantly, it clearly describes how to use each estimation strategy for the problem at hand. The book is largely self-contained, as are the individual chapters, so that anyone interested in a particular topic or area of application may read only that specific chapter. The book is specially designed for graduate students who want to understand the foundations and concepts underlying penalty and non-penalty estimation and its applications. It is well-suited as a textbook for senior undergraduate and graduate courses surveying penalty and non-penalty estimation strategies, and can also be used as a reference book for a host of related subjects, including courses on meta-analysis. Professional statisticians will find this book to be a valuable reference work, since nearly all chapters are self-contained. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783319031484 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-03149-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c293883 _d293883 |