000 04025nam a22004095i 4500
001 293903
003 MX-SnUAN
005 20160429155124.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540269496
_99783540269496
024 7 _a10.1007/b138352
_2doi
035 _avtls000346779
039 9 _a201509031101
_bVLOAD
_c201405070511
_dVLOAD
_y201402070905
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA150-272
100 1 _aFried, Michael D.
_eautor
_9326974
245 1 0 _aField Arithmetic /
_cby Michael D. Fried, Moshe Jarden.
246 3 _aRevised and Enlarged by Moshe Jarden
250 _aSecond Edition.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _axxiii, 780 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aA Series of Modern Surveys in Mathematics ;
_v11
500 _aSpringer eBooks
505 0 _aInfinite Galois Theory and Profinite Groups -- Valuations and Linear Disjointness -- Algebraic Function Fields of One Variable -- The Riemann Hypothesis for Function Fields -- Plane Curves -- The Chebotarev Density Theorem -- Ultraproducts -- Decision Procedures -- Algebraically Closed Fields -- Elements of Algebraic Geometry -- Pseudo Algebraically Closed Fields -- Hilbertian Fields -- The Classical Hilbertian Fields -- Nonstandard Structures -- Nonstandard Approach to Hilbert’s Irreducibility Theorem -- Galois Groups over Hilbertian Fields -- Free Profinite Groups -- The Haar Measure -- Effective Field Theory and Algebraic Geometry -- The Elementary Theory of e-Free PAC Fields -- Problems of Arithmetical Geometry -- Projective Groups and Frattini Covers -- PAC Fields and Projective Absolute Galois Groups -- Frobenius Fields -- Free Profinite Groups of Infinite Rank -- Random Elements in Profinite Groups -- Omega-free PAC Fields -- Undecidability -- Algebraically Closed Fields with Distinguished Automorphisms -- Galois Stratification -- Galois Stratification over Finite Fields -- Problems of Field Arithmetic.
520 _aField Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aJarden, Moshe.
_eautor
_9326975
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540228110
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138352
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293903
_d293903