000 | 04025nam a22004095i 4500 | ||
---|---|---|---|
001 | 293903 | ||
003 | MX-SnUAN | ||
005 | 20160429155124.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 gw | o |||| 0|eng d | ||
020 |
_a9783540269496 _99783540269496 |
||
024 | 7 |
_a10.1007/b138352 _2doi |
|
035 | _avtls000346779 | ||
039 | 9 |
_a201509031101 _bVLOAD _c201405070511 _dVLOAD _y201402070905 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA150-272 | |
100 | 1 |
_aFried, Michael D. _eautor _9326974 |
|
245 | 1 | 0 |
_aField Arithmetic / _cby Michael D. Fried, Moshe Jarden. |
246 | 3 | _aRevised and Enlarged by Moshe Jarden | |
250 | _aSecond Edition. | ||
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2005. |
|
300 |
_axxiii, 780 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aA Series of Modern Surveys in Mathematics ; _v11 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aInfinite Galois Theory and Profinite Groups -- Valuations and Linear Disjointness -- Algebraic Function Fields of One Variable -- The Riemann Hypothesis for Function Fields -- Plane Curves -- The Chebotarev Density Theorem -- Ultraproducts -- Decision Procedures -- Algebraically Closed Fields -- Elements of Algebraic Geometry -- Pseudo Algebraically Closed Fields -- Hilbertian Fields -- The Classical Hilbertian Fields -- Nonstandard Structures -- Nonstandard Approach to Hilbert’s Irreducibility Theorem -- Galois Groups over Hilbertian Fields -- Free Profinite Groups -- The Haar Measure -- Effective Field Theory and Algebraic Geometry -- The Elementary Theory of e-Free PAC Fields -- Problems of Arithmetical Geometry -- Projective Groups and Frattini Covers -- PAC Fields and Projective Absolute Galois Groups -- Frobenius Fields -- Free Profinite Groups of Infinite Rank -- Random Elements in Profinite Groups -- Omega-free PAC Fields -- Undecidability -- Algebraically Closed Fields with Distinguished Automorphisms -- Galois Stratification -- Galois Stratification over Finite Fields -- Problems of Field Arithmetic. | |
520 | _aField Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)? | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aJarden, Moshe. _eautor _9326975 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540228110 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b138352 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c293903 _d293903 |