000 | 02951nam a22003855i 4500 | ||
---|---|---|---|
001 | 293960 | ||
003 | MX-SnUAN | ||
005 | 20170705134229.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2014 gw | o |||| 0|eng d | ||
020 |
_a9783319031941 _99783319031941 |
||
024 | 7 |
_a10.1007/9783319031941 _2doi |
|
035 | _avtls000346371 | ||
039 | 9 |
_a201509030916 _bVLOAD _c201405050334 _dVLOAD _y201402070856 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTJ210.2-211.495 | |
100 | 1 |
_aKober, Jens. _eautor _9327092 |
|
245 | 1 | 0 |
_aLearning Motor Skills : _bFrom Algorithms to Robot Experiments / _cby Jens Kober, Jan Peters. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2014. |
|
300 |
_axvI, 191 páginas 56 ilustraciones, 54 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Tracts in Advanced Robotics, _x1610-7438 ; _v97 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aReinforcement Learning in Robotics: A Survey -- Movement Templates for Learning of Hitting and Batting -- Policy Search for Motor Primitives in Robotics -- Reinforcement Learning to Adjust Parameterized Motor Primitives to New Situations -- Learning Prioritized Control of Motor Primitives. | |
520 | _aThis book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters, and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation, and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author’s doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aPeters, Jan. _eautor _9327093 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783319031934 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-319-03194-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c293960 _d293960 |