000 | 02948nam a22003615i 4500 | ||
---|---|---|---|
001 | 293963 | ||
003 | MX-SnUAN | ||
005 | 20160429155127.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 gw | o |||| 0|eng d | ||
020 |
_a9783322820365 _99783322820365 |
||
024 | 7 |
_a10.1007/9783322820365 _2doi |
|
035 | _avtls000346457 | ||
039 | 9 |
_a201509030917 _bVLOAD _c201405050336 _dVLOAD _y201402070858 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA299.6-433 | |
100 | 1 |
_aTaschner, Rudolf. _eautor _9327098 |
|
245 | 1 | 4 |
_aThe Continuum : _bA Constructive Approach to Basic Concepts of Real Analysis / _cby Rudolf Taschner. |
264 | 1 |
_aWiesbaden : _bVieweg+Teubner Verlag, _c2005. |
|
300 |
_axI, 136 páginas 8 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _a1 Introduction and historical remarks -- 1.1 Farey fractions -- 1.2 The pentagram -- 1.3 Continued fractions -- 1.4 Special square roots -- 1.5 Dedekind cuts -- 1.6 Weyl’s alternative -- 1.7 Brouwer’s alternative -- 1.8 Integration in traditional and in intuitionistic framework -- 1.9 The wager -- 1.10 How to read the following pages -- 2 Real numbers -- 2.1 Definition of real numbers -- 2.2 Order relations -- 2.3 Equality and apartness -- 2.4 Convergent sequences of real numbers -- 3 Metric spaces -- 3.1 Metric spaces and complete metric spaces -- 3.2 Compact metric spaces -- 3.3 Topological concepts -- 3.4 The s-dimensional continuum -- 4 Continuous functions -- 4.1 Pointwise continuity -- 4.2 Uniform continuity -- 4.3 Elementary calculations in the continuum -- 4.4 Sequences and sets of continuous functions -- 5 Literature. | |
520 | _aIn this small text the basic theory of the continuum, including the elements of metric space theory and continuity is developed within the system of intuitionistic mathematics in the sense of L.E.J. Brouwer and H. Weyl. The main features are proofs of the famous theorems of Brouwer concerning the continuity of all functions that are defined on "whole" intervals, the uniform continuity of all functions that are defined on compact intervals, and the uniform convergence of all pointwise converging sequences of functions defined on compact intervals. The constructive approach is interesting both in itself and as a contrast to, for example, the formal axiomatic one. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783322820389 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-322-82036-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c293963 _d293963 |