000 02948nam a22003615i 4500
001 293963
003 MX-SnUAN
005 20160429155127.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783322820365
_99783322820365
024 7 _a10.1007/9783322820365
_2doi
035 _avtls000346457
039 9 _a201509030917
_bVLOAD
_c201405050336
_dVLOAD
_y201402070858
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _aTaschner, Rudolf.
_eautor
_9327098
245 1 4 _aThe Continuum :
_bA Constructive Approach to Basic Concepts of Real Analysis /
_cby Rudolf Taschner.
264 1 _aWiesbaden :
_bVieweg+Teubner Verlag,
_c2005.
300 _axI, 136 páginas 8 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _a1 Introduction and historical remarks -- 1.1 Farey fractions -- 1.2 The pentagram -- 1.3 Continued fractions -- 1.4 Special square roots -- 1.5 Dedekind cuts -- 1.6 Weyl’s alternative -- 1.7 Brouwer’s alternative -- 1.8 Integration in traditional and in intuitionistic framework -- 1.9 The wager -- 1.10 How to read the following pages -- 2 Real numbers -- 2.1 Definition of real numbers -- 2.2 Order relations -- 2.3 Equality and apartness -- 2.4 Convergent sequences of real numbers -- 3 Metric spaces -- 3.1 Metric spaces and complete metric spaces -- 3.2 Compact metric spaces -- 3.3 Topological concepts -- 3.4 The s-dimensional continuum -- 4 Continuous functions -- 4.1 Pointwise continuity -- 4.2 Uniform continuity -- 4.3 Elementary calculations in the continuum -- 4.4 Sequences and sets of continuous functions -- 5 Literature.
520 _aIn this small text the basic theory of the continuum, including the elements of metric space theory and continuity is developed within the system of intuitionistic mathematics in the sense of L.E.J. Brouwer and H. Weyl. The main features are proofs of the famous theorems of Brouwer concerning the continuity of all functions that are defined on "whole" intervals, the uniform continuity of all functions that are defined on compact intervals, and the uniform convergence of all pointwise converging sequences of functions defined on compact intervals. The constructive approach is interesting both in itself and as a contrast to, for example, the formal axiomatic one.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783322820389
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-322-82036-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c293963
_d293963