000 | 03033nam a22003855i 4500 | ||
---|---|---|---|
001 | 294242 | ||
003 | MX-SnUAN | ||
005 | 20160429155138.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 gw | o |||| 0|eng d | ||
020 |
_a9783540307990 _99783540307990 |
||
024 | 7 |
_a10.1007/3540307990 _2doi |
|
035 | _avtls000347549 | ||
039 | 9 |
_a201509030444 _bVLOAD _c201404121432 _dVLOAD _c201404091209 _dVLOAD _y201402070934 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aHB135-147 | |
100 | 1 |
_aMalliavin, Paul. _eautor _9327623 |
|
245 | 1 | 0 |
_aStochastic Calculus of Variations in Mathematical Finance / _cby Paul Malliavin, Anton Thalmaier. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2006. |
|
300 |
_axI, 142 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aSpringer Finance | |
500 | _aSpringer eBooks | ||
505 | 0 | _aGaussian Stochastic Calculus of Variations -- Computation of Greeks and Integration by Parts Formulae -- Market Equilibrium and Price-Volatility Feedback Rate -- Multivariate Conditioning and Regularity of Law -- Non-Elliptic Markets and Instability in HJM Models -- Insider Trading -- Asymptotic Expansion and Weak Convergence -- Stochastic Calculus of Variations for Markets with Jumps. | |
520 | _aMalliavin calculus provides an infinite-dimensional differential calculus in the context of continuous paths stochastic processes. The calculus includes formulae of integration by parts and Sobolev spaces of differentiable functions defined on a probability space. This new book, demonstrating the relevance of Malliavin calculus for Mathematical Finance, starts with an exposition from scratch of this theory. Greeks (price sensitivities) are reinterpreted in terms of Malliavin calculus. Integration by parts formulae provide stable Monte Carlo schemes for numerical valuation of digital options. Finite-dimensional projections of infinite-dimensional Sobolev spaces lead to Monte Carlo computations of conditional expectations useful for computing American options. The discretization error of the Euler scheme for a stochastic differential equation is expressed as a generalized Watanabe distribution on the Wiener space. Insider information is expressed as an infinite-dimensional drift. The last chapter gives an introduction to the same objects in the context of jump processes where incomplete markets appear. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aThalmaier, Anton. _eautor _9327624 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540434313 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/3-540-30799-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c294242 _d294242 |