000 03454nam a22003615i 4500
001 294252
003 MX-SnUAN
005 20160429155139.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540277521
_99783540277521
024 7 _a10.1007/9783540277521
_2doi
035 _avtls000347034
039 9 _a201509030918
_bVLOAD
_c201405050337
_dVLOAD
_y201402070922
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aHB139-141
100 1 _aLütkepohl, Helmut.
_eautor
_9327639
245 1 0 _aNew Introduction to Multiple Time Series Analysis /
_cby Helmut Lütkepohl.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2005.
300 _axxI, 764 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aFinite Order Vector Autoregressive Processes -- Stable Vector Autoregressive Processes -- Estimation of Vector Autoregressive Processes -- VAR Order Selection and Checking the Model Adequacy -- VAR Processes with Parameter Constraints -- Cointegrated Processes -- Vector Error Correction Models -- Estimation of Vector Error Correction Models -- Specification of VECMs -- Structural and Conditional Models -- Structural VARs and VECMs -- Systems of Dynamic Simultaneous Equations -- Infinite Order Vector Autoregressive Processes -- Vector Autoregressive Moving Average Processes -- Estimation of VARMA Models -- Specification and Checking the Adequacy of VARMA Models -- Cointegrated VARMA Processes -- Fitting Finite Order VAR Models to Infinite Order Processes -- Time Series Topics -- Multivariate ARCH and GARCH Models -- Periodic VAR Processes and Intervention Models -- State Space Models.
520 _aThis reference work and graduate level textbook considers a wide range of models and methods for analyzing and forecasting multiple time series. The models covered include vector autoregressive, cointegrated, vector autoregressive moving average, multivariate ARCH and periodic processes as well as dynamic simultaneous equations and state space models. Least squares, maximum likelihood, and Bayesian methods are considered for estimating these models. Different procedures for model selection and model specification are treated and a wide range of tests and criteria for model checking are introduced. Causality analysis, impulse response analysis and innovation accounting are presented as tools for structural analysis. The book is accessible to graduate students in business and economics. In addition, multiple time series courses in other fields such as statistics and engineering may be based on it. Applied researchers involved in analyzing multiple time series may benefit from the book as it provides the background and tools for their tasks. It bridges the gap to the difficult technical literature on the topic.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540401728
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-27752-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c294252
_d294252