000 03946nam a22003855i 4500
001 294269
003 MX-SnUAN
005 20160429155139.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540290896
_99783540290896
024 7 _a10.1007/3540290893
_2doi
035 _avtls000347282
039 9 _a201509030443
_bVLOAD
_c201404121400
_dVLOAD
_c201404091137
_dVLOAD
_y201402070928
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aDafermos, Constantine M.
_eautor
_9327674
245 1 0 _aHyberbolic Conservation Laws in Continuum Physics /
_cby Constantine M. Dafermos.
250 _aSecond Edition.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _axIx, 626 páginas 38 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
_x0072-7830 ;
_v325
500 _aSpringer eBooks
505 0 _aBalance Laws -- to Continuum Physics -- Hyperbolic Systems of Balance Laws -- The Cauchy Problem -- Entropy and the Stability of Classical Solutions -- The L1 Theory for Scalar Conservation Laws -- Hyperbolic Systems of Balance Laws in One-Space Dimension -- Admissible Shocks -- Admissible Wave Fans and the Riemann Problem -- Generalized Characteristics. -- Genuinely Nonlinear Scalar Conservation Laws -- Genuinely Nonlinear Systems of Two Conservation Laws -- The Random Choice Method -- The Front Tracking Method and Standard Riemann Semigroups -- Construction of BV Solutions by the Vanishing Viscosity Method -- Compensated Compactness.
520 _aThis masterly exposition of the mathematical theory of hyperbolic system for conservation laws brings out the intimate connection with continuum thermodynamics, by emphasising issues in which the analysis may reveal something about the physics and, in return, the underlying physical structure may direct and drive the analysis. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of the qualitative theory of partial differential equations, whereas the required notions from continuum physics are introduced from scratch. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. The 2nd edition contains a new chapter recounting the exciting recent developments on the vanishing viscosity method. Numerous new sections have been incorporated in preexisting chapters, to introduce newly derived results or present older material, omitted in the first edition, whose relevance and importance has been underscored by current trends in research. In addition, a substantal portion of the original text has been revamped so as to streamline the exposition, enrich the collection of examples and improve the notation. The bibliography has been updated and expanded as well, now comprising over one thousand titles.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540254522
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/3-540-29089-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c294269
_d294269