000 03296nam a22003735i 4500
001 294353
003 MX-SnUAN
005 20160429155142.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540301806
_99783540301806
024 7 _a10.1007/b104335
_2doi
035 _avtls000347412
039 9 _a201509031108
_bVLOAD
_c201405070455
_dVLOAD
_y201402070931
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA268
100 1 _aGuruswami, Venkatesan.
_eautor
_9327837
245 1 0 _aList Decoding of Error-Correcting Codes :
_bWinning Thesis of the 2002 ACM Doctoral Dissertation Competition /
_cby Venkatesan Guruswami.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _axIx, 350 páginas Also available online.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v3282
500 _aSpringer eBooks
505 0 _a1 Introduction -- 1 Introduction -- 2 Preliminaries and Monograph Structure -- I Combinatorial Bounds -- 3 Johnson-Type Bounds and Applications to List Decoding -- 4 Limits to List Decodability -- 5 List Decodability Vs. Rate -- II Code Constructions and Algorithms -- 6 Reed-Solomon and Algebraic-Geometric Codes -- 7 A Unified Framework for List Decoding of Algebraic Codes -- 8 List Decoding of Concatenated Codes -- 9 New, Expander-Based List Decodable Codes -- 10 List Decoding from Erasures -- III Applications -- Interlude -- III Applications -- 11 Linear-Time Codes for Unique Decoding -- 12 Sample Applications Outside Coding Theory -- 13 Concluding Remarks -- A GMD Decoding of Concatenated Codes.
520 _aThis monograph is a thoroughly revised and extended version of the author's PhD thesis, which was selected as the winning thesis of the 2002 ACM Doctoral Dissertation Competition. Venkatesan Guruswami did his PhD work at the MIT with Madhu Sudan as thesis adviser. Starting with the seminal work of Shannon and Hamming, coding theory has generated a rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the transmission errors efficiently. This book presents some spectacular new results in the area of decoding algorithms for error-correcting codes. Specificially, it shows how the notion of list-decoding can be applied to recover from far more errors, for a wide variety of error-correcting codes, than achievable before The style of the exposition is crisp and the enormous amount of information on combinatorial results, polynomial time list decoding algorithms, and applications is presented in well structured form.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540240518
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b104335
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c294353
_d294353