000 03967nam a22004095i 4500
001 294573
003 MX-SnUAN
005 20160429155152.0
007 cr nn 008mamaa
008 150903s2006 gw | o |||| 0|eng d
020 _a9783540307266
_99783540307266
024 7 _a10.1007/9783540307266
_2doi
035 _avtls000347530
039 9 _a201509030919
_bVLOAD
_c201405050338
_dVLOAD
_y201402070933
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQC1-999
100 1 _aCanuto, Claudio.
_eautor
_9328234
245 1 0 _aSpectral Methods :
_bFundamentals in Single Domains /
_cby Claudio Canuto, M. Youssuff Hussaini, Alfio Quarteroni, Thomas A. Zang.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2006.
300 _axxii, 563 páginas 106 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aScientific Computation,
_x1434-8322
500 _aSpringer eBooks
505 0 _aPolynomial Approximation -- Basic Approaches to Constructing Spectral Methods -- Algebraic Systems and Solution Techniques -- Polynomial Approximation Theory -- Theory of Stability and Convergence -- Analysis of Model Boundary-Value Problems -- Erratum.
520 _aSince the publication of "Spectral Methods in Fluid Dynamics", spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of the earlier book, Canuto et al. now incorporate the many improvements in the algorithms and the theory of spectral methods that have been made since 1988. The initial treatment Fundamentals in Single Domains discusses the fundamentals of the approximation of solutions to ordinary and partial differential equations on single domains by expansions in smooth, global basis functions. The first half of the book provides the algorithmic details of orthogonal expansions, transform methods, spectral discretization of differential equations plus their boundary conditions, and solution of the discretized equations by direct and iterative methods. The second half furnishes a comprehensive discussion of the mathematical theory of spectral methods on single domains, including approximation theory, stability and convergence, and illustrative applications of the theory to model boundary-value problems. Both the algorithmic and theoretical discussions cover spectral methods on tensor-product domains, triangles and tetrahedra. All chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is greatly expanded as are the set of numerical examples that illustrate the key properties of the various types of spectral approximations and the solution algorithms. A companion book "Evolution to Complex Geometries and Applications to Fluid Dynamics" contains an extensive survey of the essential algorithmic and theoretical aspects of spectral methods for complex geometries and provides detailed discussions of spectral algorithms for fluid dynamics in simple and complex geometries.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHussaini, M. Youssuff.
_eautor
_9328235
700 1 _aQuarteroni, Alfio.
_eautor
_9328236
700 1 _aZang, Thomas A.
_eautor
_9328237
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540307259
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-30726-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c294573
_d294573