000 04229nam a22004095i 4500
001 294574
003 MX-SnUAN
005 20160429155152.0
007 cr nn 008mamaa
008 150903s2007 gw | o |||| 0|eng d
020 _a9783540307280
_99783540307280
024 7 _a10.1007/9783540307280
_2doi
035 _avtls000347531
039 9 _a201509030919
_bVLOAD
_c201405050338
_dVLOAD
_y201402070933
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA71-90
100 1 _aCanuto, Claudio.
_eautor
_9328234
245 1 0 _aSpectral Methods :
_bEvolution to Complex Geometries and Applications to Fluid Dynamics /
_cby Claudio Canuto, Alfio Quarteroni, M. Yousuff Hussaini, Thomas A. Zang.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2007.
300 _axxx, 598 páginas 183 ilustraciones, 20 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aScientific Computation,
_x1434-8322
500 _aSpringer eBooks
505 0 _aFundamentals of Fluid Dynamics -- Single-Domain Algorithms and Applications for Stability Analysis -- Single-Domain Algorithms and Applications for Incompressible Flows -- Single-Domain Algorithms and Applications for Compressible Flows -- Discretization Strategies for Spectral Methods in Complex Domains -- Solution Strategies for Spectral Methods in Complex Domains -- General Algorithms for Incompressible Navier-Stokes Equations -- Spectral Methods Primer.
520 _aSpectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of their 1988 book, Canuto et al. now incorporate the many improvements in the algorithms and the theory of spectral methods that have been made since then. This second new treatment, Evolution to Complex Geometries and Applications to Fluid Dynamics, provides an extensive overview of the essential algorithmic and theoretical aspects of spectral methods for complex geometries, in addition to detailed discussions of spectral algorithms for fluid dynamics in simple and complex geometries. Modern strategies for constructing spectral approximations in complex domains, such as spectral elements, mortar elements, and discontinuous Galerkin methods, as well as patching collocation, are introduced, analyzed, and demonstrated by means of numerous numerical examples. Representative simulations from continuum mechanics are also shown. Efficient domain decomposition preconditioners (of both Schwarz and Schur type) that are amenable to parallel implementation are surveyed. The discussion of spectral algorithms for fluid dynamics in single domains focuses on proven algorithms for the boundary-layer equations, linear and nonlinear stability analyses, incompressible Navier-Stokes problems, and both inviscid and viscous compressible flows. An overview of the modern approach to computing incompressible flows in general geometries using high-order, spectral discretizations is also provided. The recent companion book Fundamentals in Single Domains discusses the fundamentals of the approximation of solutions to ordinary and partial differential equations on single domains by expansions in smooth, global basis functions. The essential concepts and formulas from this book are included in the current text for the reader’s convenience.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aQuarteroni, Alfio.
_eautor
_9328236
700 1 _aHussaini, M. Yousuff.
_eautor
_9328238
700 1 _aZang, Thomas A.
_eautor
_9328237
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540307273
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-30728-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c294574
_d294574