000 03316nam a22003735i 4500
001 294585
003 MX-SnUAN
005 20160429155152.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540278559
_99783540278559
024 7 _a10.1007/9783540278559
_2doi
035 _avtls000347049
039 9 _a201509030918
_bVLOAD
_c201405050337
_dVLOAD
_y201402070922
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA612.33
100 1 _aFriedlander, Eric M.
_eeditor.
_9328256
245 1 0 _aHandbook of K-Theory /
_cedited by Eric M. Friedlander, Daniel R. Grayson.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _aeReference
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPart I: Foundations and Computations: Deloopings in Algebraic K- theory -- The Motivic Spectral Sequence -- K-theory of truncated polynomial algebras -- Bott Periodicity in Topological, Algebraic and Hermitian K-theory -- Algebraic K-theory of Rings and Integers in Local and Global Fields. Part II: K-theory and Algebraic Geometry: Motivic Cohomology, K-theory and topological cyclic Homology -- K-theory and Intersection Theory -- Regulators -- Algebraic K-theory, Algebraic Cycles and Arithmetic Geometry -- Mixed Motives. Part III: K-theory and Geometric Topology: Witt Groups -- K-theory and Geometric Topology -- Quadratic K-theory and Geometric Topology. Part IV: K-theory and Operator Algebras: Bivariant K-and Cyclic Theories -- The Baum-Connes and the Farrell-Jones Conjectures in K-and L-theory -- Comparison Between Algebraic and Topological K-theory for Banach Algebras and C*-Algebras. Part V: Other Forms of K-theory: Semi-topological K-theory -- Equivariant K-theory -- K(1)-local Homotopy Theory, Iwasawa Theory and Algebraic K-theory -- The K-theory of Triangulated Categories.
520 _aThis handbook offers a compilation of techniques and results in K-theory. These two volumes consist of chapters, each of which is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. The overall intent of this handbook is to offer the interested reader an exposition of our current state of knowledge as well as an implicit blueprint for future research. This handbook should be especially useful for students wishing to obtain an overview of K-theory and for mathematicians interested in pursuing challenges in this rapidly expanding field.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGrayson, Daniel R.
_eeditor.
_9328257
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540230199
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-27855-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c294585
_d294585