000 05297nam a22004095i 4500
001 294816
003 MX-SnUAN
005 20170705134230.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540315780
_99783540315780
024 7 _a10.1007/b136985
_2doi
035 _avtls000347795
039 9 _a201509030437
_bVLOAD
_c201405070505
_dVLOAD
_y201402070939
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ337.5
100 1 _aOza, Nikunj C.
_eeditor.
_9328728
245 1 0 _aMultiple Classifier Systems :
_b6th International Workshop, MCS 2005, Seaside, CA, USA, June 13-15, 2005. Proceedings /
_cedited by Nikunj C. Oza, Robi Polikar, Josef Kittler, Fabio Roli.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _axii, 430 páginas Also available online.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v3541
500 _aSpringer eBooks
505 0 _aFuture Directions -- Semi-supervised Multiple Classifier Systems: Background and Research Directions -- Boosting -- Boosting GMM and Its Two Applications -- Boosting Soft-Margin SVM with Feature Selection for Pedestrian Detection -- Observations on Boosting Feature Selection -- Boosting Multiple Classifiers Constructed by Hybrid Discriminant Analysis -- Combination Methods -- Decoding Rules for Error Correcting Output Code Ensembles -- A Probability Model for Combining Ranks -- EER of Fixed and Trainable Fusion Classifiers: A Theoretical Study with Application to Biometric Authentication Tasks -- Mixture of Gaussian Processes for Combining Multiple Modalities -- Dynamic Classifier Integration Method -- Recursive ECOC for Microarray Data Classification -- Using Dempster-Shafer Theory in MCF Systems to Reject Samples -- Multiple Classifier Fusion Performance in Networked Stochastic Vector Quantisers -- On Deriving the Second-Stage Training Set for Trainable Combiners -- Using Independence Assumption to Improve Multimodal Biometric Fusion -- Design Methods -- Half-Against-Half Multi-class Support Vector Machines -- Combining Feature Subsets in Feature Selection -- ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments -- Using Decision Tree Models and Diversity Measures in the Selection of Ensemble Classification Models -- Ensembles of Classifiers from Spatially Disjoint Data -- Optimising Two-Stage Recognition Systems -- Design of Multiple Classifier Systems for Time Series Data -- Ensemble Learning with Biased Classifiers: The Triskel Algorithm -- Cluster-Based Cumulative Ensembles -- Ensemble of SVMs for Incremental Learning -- Performance Analysis -- Design of a New Classifier Simulator -- Evaluation of Diversity Measures for Binary Classifier Ensembles -- Which Is the Best Multiclass SVM Method? An Empirical Study -- Over-Fitting in Ensembles of Neural Network Classifiers Within ECOC Frameworks -- Between Two Extremes: Examining Decompositions of the Ensemble Objective Function -- Data Partitioning Evaluation Measures for Classifier Ensembles -- Dynamics of Variance Reduction in Bagging and Other Techniques Based on Randomisation -- Ensemble Confidence Estimates Posterior Probability -- Applications -- Using Domain Knowledge in the Random Subspace Method: Application to the Classification of Biomedical Spectra -- An Abnormal ECG Beat Detection Approach for Long-Term Monitoring of Heart Patients Based on Hybrid Kernel Machine Ensemble -- Speaker Verification Using Adapted User-Dependent Multilevel Fusion -- Multi-modal Person Recognition for Vehicular Applications -- Using an Ensemble of Classifiers to Audit a Production Classifier -- Analysis and Modelling of Diversity Contribution to Ensemble-Based Texture Recognition Performance -- Combining Audio-Based and Video-Based Shot Classification Systems for News Videos Segmentation -- Designing Multiple Classifier Systems for Face Recognition -- Exploiting Class Hierarchies for Knowledge Transfer in Hyperspectral Data.
520 _aThis book constitutes the refereed proceedings of the 6th International Workshop on Multiple Classifier Systems, MCS 2005, held in Seaside, CA, USA in June 2005. The 42 revised full papers presented were carefully reviewed and are organized in topical sections on boosting, combination methods, design of ensembles, performance analysis, and applications. They exemplify significant advances in the theory, algorithms, and applications of multiple classifier systems – bringing the different scientific communities together.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aPolikar, Robi.
_eeditor.
_9328729
700 1 _aKittler, Josef.
_eeditor.
_9328730
700 1 _aRoli, Fabio.
_eeditor.
_9328731
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540263067
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b136985
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c294816
_d294816