000 03103nam a22003855i 4500
001 294826
003 MX-SnUAN
005 20160429155202.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540318415
_99783540318415
024 7 _a10.1007/b106731
_2doi
035 _avtls000347970
039 9 _a201509030442
_bVLOAD
_c201405070458
_dVLOAD
_y201402071016
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.D3
100 1 _aGoethals, Bart.
_eeditor.
_9313087
245 1 0 _aKnowledge Discovery in Inductive Databases :
_bThird International Workshop, KDID 2004, Pisa, Italy, September 20, 2004, Revised Selected and Invited Papers /
_cedited by Bart Goethals, Arno Siebes.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _avii, 191 páginas Also available online.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v3377
500 _aSpringer eBooks
505 0 _aInvited Paper -- Models and Indices for Integrating Unstructured Data with a Relational Database -- Contributed Papers -- Constraint Relaxations for Discovering Unknown Sequential Patterns -- Mining Formal Concepts with a Bounded Number of Exceptions from Transactional Data -- Theoretical Bounds on the Size of Condensed Representations -- Mining Interesting XML-Enabled Association Rules with Templates -- Database Transposition for Constrained (Closed) Pattern Mining -- An Efficient Algorithm for Mining String Databases Under Constraints -- An Automata Approach to Pattern Collections -- Implicit Enumeration of Patterns -- Condensed Representation of EPs and Patterns Quantified by Frequency-Based Measures.
520 _aThis book constitutes the thoroughly refereed joint postproceedings of the Third International Workshop on Knowledge Discovery in Inductive Databases, KDID 2004, held in Pisa, Italy in September 2004 in association with ECML/PKDD. Inductive Databases support data mining and the knowledge discovery process in a natural way. In addition to usual data, an inductive database also contains inductive generalizations, like patterns and models extracted from the data. This book presents nine revised full papers selected from 23 submissions during two rounds of reviewing and improvement together with one invited paper. Various current topics in knowledge discovery and data mining in the framework of inductive databases are addressed.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSiebes, Arno.
_eeditor.
_9328750
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540250821
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b106731
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c294826
_d294826