000 03598nam a22004215i 4500
001 295159
003 MX-SnUAN
005 20170705134232.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540324089
_99783540324089
024 7 _a10.1007/b137220
_2doi
035 _avtls000348381
039 9 _a201509031114
_bVLOAD
_c201405070505
_dVLOAD
_y201402071026
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTA329-348
100 1 _aYoung Lin, Tsau.
_eeditor.
_9328604
245 1 0 _aFoundations of Data Mining and knowledge Discovery /
_cedited by Tsau Young Lin, Setsuo Ohsuga, Churn-Jung Liau, Xiaohua Hu, Shusaku Tsumoto.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _axiii, 375 páginas Also available online.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aStudies in Computational Intelligence,
_x1860-949X ;
_v6
500 _aSpringer eBooks
505 0 _aFrom the contents: Part I Foundations of Data Mining; Knowledge Discovery as Translation; Mathematical Foundation of Association Rules – Mining Associations by Solving Integral Linear Inequalities; Comparative Study of Sequential Pattern Mining Models; Designing Robust Regression Models; A Probabilistic Logic-based Framework for Characterizing Knowledge Discovery in Databases; A Careful Look at the Use of Statistical Methodology in Data Mining; Justification and Hypothesis Selection in Data Mining -- Part II Methods of Data Mining; A Comparative Investigation on Model Selection in Binary Factor Analysis; Extraction of Generalized Rules with Automated Attribute Abstraction; Decision Making Based on Hybrid of Multi-knowledge and Naïve Bayes Classifier; First-Order Logic Based Formalism for Temporal Data Mining; An Alternative Approach to Mining Association Rules -- Part III General Knowledge Discovery; Posting Act Tagging Using Transformation-Based Learning.
520 _aFoundations of Data Mining and Knowledge Discovery contains the latest results and new directions in data mining research. Data mining, which integrates various technologies, including computational intelligence, database and knowledge management, machine learning, soft computing, and statistics, is one of the fastest growing fields in computer science. Although many data mining techniques have been developed, further development of the field requires a close examination of its foundations. This volume presents the results of investigations into the foundations of the discipline, and represents the state-of-the-art for much of the current research. This book will prove extremely valuable and fruitful for data mining researchers, no matter whether they would like to uncover the fundamental principles behind data mining, or apply the theories to practical applications.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aOhsuga, Setsuo.
_eeditor.
_9328605
700 1 _aLiau, Churn-Jung.
_eeditor.
_9328606
700 1 _aHu, Xiaohua.
_eeditor.
_9328607
700 1 _aTsumoto, Shusaku.
_eeditor.
_9329162
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540262572
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b137220
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c295159
_d295159