000 03243nam a22003855i 4500
001 295171
003 MX-SnUAN
005 20160429155217.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540315469
_99783540315469
024 7 _a10.1007/11551621
_2doi
035 _avtls000347769
039 9 _a201509030739
_bVLOAD
_c201404121039
_dVLOAD
_c201404090816
_dVLOAD
_y201402070939
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA319-329.9
100 1 _aGurariy, Vladimir.
_eautor
_9329381
245 1 0 _aGeometry of Müntz Spaces and Related Questions /
_cby Vladimir Gurariy, Wolfgang Lusky.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _axiii, 176 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1870
500 _aSpringer eBooks
505 0 _aPreface -- Part I Subspaces and Sequences in Banach Spaces: Disposition of Subspaces -- Sequences in Normed Spaces -- Isomorphism, Isometries and Embeddings -- Spaces of Universal Disposition -- Bounded Approximation Properties -- Part II On the Geometry of Müntz Sequences: Coefficient Estimates and the Müntz Theorem -- Classification and Elementary Properties of Müntz Sequences -- More on the Geometry of Müntz Sequences and Müntz Polynomials -- Operators of Finite Rank and Bases in Müntz Spaces -- Projection Types and the Isomorphism Problem for Müntz Spaces -- The Classes [M], A, P, and Pe -- Finite Dimensional Müntz Limiting Spaces in C -- References -- Index.
520 _aStarting point and motivation for this volume is the classical Muentz theorem which states that the space of all polynomials on the unit interval, whose exponents have too many gaps, is no longer dense in the space of all continuous functions. The resulting spaces of Muentz polynomials are largely unexplored as far as the Banach space geometry is concerned and deserve the attention that the authors arouse. They present the known theorems and prove new results concerning, for example, the isomorphic and isometric classification and the existence of bases in these spaces. Moreover they state many open problems. Although the viewpoint is that of the geometry of Banach spaces they only assume that the reader is familiar with basic functional analysis. In the first part of the book the Banach spaces notions are systematically introduced and are later on applied for Muentz spaces. They include the opening and inclination of subspaces, bases and bounded approximation properties and versions of universality.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLusky, Wolfgang.
_eautor
_9329382
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540288008
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/11551621
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c295171
_d295171