000 | 03243nam a22003855i 4500 | ||
---|---|---|---|
001 | 295171 | ||
003 | MX-SnUAN | ||
005 | 20160429155217.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 gw | o |||| 0|eng d | ||
020 |
_a9783540315469 _99783540315469 |
||
024 | 7 |
_a10.1007/11551621 _2doi |
|
035 | _avtls000347769 | ||
039 | 9 |
_a201509030739 _bVLOAD _c201404121039 _dVLOAD _c201404090816 _dVLOAD _y201402070939 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA319-329.9 | |
100 | 1 |
_aGurariy, Vladimir. _eautor _9329381 |
|
245 | 1 | 0 |
_aGeometry of Müntz Spaces and Related Questions / _cby Vladimir Gurariy, Wolfgang Lusky. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2005. |
|
300 |
_axiii, 176 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1870 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Part I Subspaces and Sequences in Banach Spaces: Disposition of Subspaces -- Sequences in Normed Spaces -- Isomorphism, Isometries and Embeddings -- Spaces of Universal Disposition -- Bounded Approximation Properties -- Part II On the Geometry of Müntz Sequences: Coefficient Estimates and the Müntz Theorem -- Classification and Elementary Properties of Müntz Sequences -- More on the Geometry of Müntz Sequences and Müntz Polynomials -- Operators of Finite Rank and Bases in Müntz Spaces -- Projection Types and the Isomorphism Problem for Müntz Spaces -- The Classes [M], A, P, and Pe -- Finite Dimensional Müntz Limiting Spaces in C -- References -- Index. | |
520 | _aStarting point and motivation for this volume is the classical Muentz theorem which states that the space of all polynomials on the unit interval, whose exponents have too many gaps, is no longer dense in the space of all continuous functions. The resulting spaces of Muentz polynomials are largely unexplored as far as the Banach space geometry is concerned and deserve the attention that the authors arouse. They present the known theorems and prove new results concerning, for example, the isomorphic and isometric classification and the existence of bases in these spaces. Moreover they state many open problems. Although the viewpoint is that of the geometry of Banach spaces they only assume that the reader is familiar with basic functional analysis. In the first part of the book the Banach spaces notions are systematically introduced and are later on applied for Muentz spaces. They include the opening and inclination of subspaces, bases and bounded approximation properties and versions of universality. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aLusky, Wolfgang. _eautor _9329382 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540288008 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/11551621 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c295171 _d295171 |