000 03543nam a22003855i 4500
001 295286
003 MX-SnUAN
005 20160429155221.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540315537
_99783540315537
024 7 _a10.1007/b104762
_2doi
035 _avtls000347776
039 9 _a201509030232
_bVLOAD
_c201405070455
_dVLOAD
_y201402070939
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aHelffer, Bernard.
_eautor
_9306203
245 1 0 _aHypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians /
_cby Bernard Helffer, Francis Nier.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _ax, 209 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Mathematics,
_x1617-9692 ;
_v1862
500 _aSpringer eBooks
505 0 _aKohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index.
520 _aThere has recently been a renewal of interest in Fokker-Planck operators, motivated by problems in statistical physics, in kinetic equations and differential geometry. Compared to more standard problems in the spectral theory of partial differential operators, those operators are not self-adjoint and only hypoelliptic. The aim of the analysis is to give, as generally as possible, an accurate qualitative and quantitative description of the exponential return to the thermodynamical equilibrium. While exploring and improving recent results in this direction this volume proposes a review of known techniques on: the hypoellipticity of polynomial of vector fields and its global counterpart; the global Weyl-Hörmander pseudo-differential calculus, the spectral theory of non-self-adjoint operators, the semi-classical analysis of Schrödinger-type operators, the Witten complexes and the Morse inequalities.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aNier, Francis.
_eautor
_9329580
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540242000
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b104762
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c295286
_d295286