000 02623nam a22003735i 4500
001 295392
003 MX-SnUAN
005 20160429155225.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540315131
_99783540315131
024 7 _a10.1007/11540953
_2doi
035 _avtls000347738
039 9 _a201509030738
_bVLOAD
_c201404121032
_dVLOAD
_c201404090809
_dVLOAD
_y201402070938
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQC5.53
100 1 _aKlein, Christian.
_eautor
_9329783
245 1 0 _aErnst Equation and Riemann Surfaces :
_bAnalytical and Numerical Methods /
_cby Christian Klein.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _ax, 249 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Physics,
_x0075-8450 ;
_v685
500 _aSpringer eBooks
505 0 _aIntroduction -- The Ernst Equation -- Riemann-Hilbert Problem and Fay's Identity -- Analyticity Properties and Limiting Cases -- Boundary Value Problems and Solutions -- Hyperelliptic Theta Functions and Spectral Methods -- Physical Properties -- Open Problems -- Riemann Surfaces and Theta Functions -- Ernst Equation and Twister Theory -- Index.
520 _aExact solutions to Einstein`s equations have been useful for the understanding of general relativity in many respects. They have led to physical concepts as black holes and event horizons and helped to visualize interesting features of the theory. In addition they have been used to test the quality of various approximation methods and numerical codes. The most powerful solution generation methods are due to the theory of Integrable Systems. In the case of axisymmetric stationary spacetimes the Einstein equations are equivalent to the completely integrable Ernst equation. In this volume the solutions to the Ernst equation associated to Riemann surfaces are studied in detail and physical and mathematical aspects of this class are discussed both analytically and numerically.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540285892
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/11540953
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c295392
_d295392