000 02495nam a22003735i 4500
001 295445
003 MX-SnUAN
005 20160429155227.0
007 cr nn 008mamaa
008 150903s2005 gw | o |||| 0|eng d
020 _a9783540315612
_99783540315612
024 7 _a10.1007/b104209
_2doi
035 _avtls000347782
039 9 _a201509031108
_bVLOAD
_c201405070454
_dVLOAD
_y201402070939
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA174-183
100 1 _aLetellier, Emmanuel.
_eautor
_9329868
245 1 0 _aFourier Transforms of Invariant Functions on Finite Reductive Lie Algebras /
_cby Emmanuel Letellier.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2005.
300 _axI, 165 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Mathematics,
_x1617-9692 ;
_v1859
500 _aSpringer eBooks
505 0 _aPreface -- Introduction -- Connected Reductive Groups and their Lie Algebras -- Deligne-Lusztig Induction -- Local Systems and Perverse Shaeves -- Geometrical Induction -- Deligne-Lusztig Induction and Fourier Transforms -- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits -- References -- Index.
520 _aThe study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lusztig’s character sheaves theory. He conjectures a commutation formula between Deligne-Lusztig induction and Fourier transforms that he proves in many cases. As an application the computation of the values of the trigonometric sums (on reductive Lie algebras) is shown to reduce to the computation of the generalized Green functions and to the computation of some fourth roots of unity.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540240204
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b104209
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c295445
_d295445