000 03389nam a22003855i 4500
001 295527
003 MX-SnUAN
005 20160429155231.0
007 cr nn 008mamaa
008 150903s2006 gw | o |||| 0|eng d
020 _a9783540329022
_99783540329022
024 7 _a10.1007/9783540329022
_2doi
035 _avtls000348538
039 9 _a201509030920
_bVLOAD
_c201405050340
_dVLOAD
_y201402071030
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA372
100 1 _aDumortier, Freddy.
_eautor
_9330025
245 1 0 _aQualitative Theory of Planar Differential Systems /
_cby Freddy Dumortier, Jaume Llibre, Joan C. Artés.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2006.
300 _axvI, 302 páginas 123 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aBasic Results on the Qualitative Theory of Differential Equations -- Normal Forms and Elementary Singularities -- Desingularization of Nonelementary Singularities -- Centers and Lyapunov Constants -- Poincaré and Poincaré–Lyapunov Compactification -- Indices of Planar Singular Points -- Limit Cycles and Structural Stability -- Integrability and Algebraic Solutions in Polynomial Vector Fields -- Polynomial Planar Phase Portraits -- Examples for Running P4.
520 _aThe book deals essentially with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced: based on both algebraic manipulation and numerical calculation, this was conceived for the purpose of drawing "Polynomial Planar Phase Portraits" on part of the plane, or on a Poincaré compactification, or even on a Poincaré-Lyapunov compactification of the plane. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems. The book is very appropriate for a first course in dynamical systems, presenting the basic notions in the study of individual two dimensional systems. Not only does it provide simple and appropriate proofs, but it also contains a lot of exercises and presents a survey of interesting results with the necessary references to the literature.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLlibre, Jaume.
_eautor
_9325520
700 1 _aArtés, Joan C.
_eautor
_9330026
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540328933
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-32902-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c295527
_d295527