000 03440nam a22004095i 4500
001 295698
003 MX-SnUAN
005 20160429155236.0
007 cr nn 008mamaa
008 150903s2006 gw | o |||| 0|eng d
020 _a9783540330998
_99783540330998
024 7 _a10.1007/3540330992
_2doi
035 _avtls000348593
039 9 _a201509030436
_bVLOAD
_c201404121511
_dVLOAD
_c201404091248
_dVLOAD
_y201402071032
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA564-609
100 1 _aBasu, Saugata.
_eautor
_9330294
245 1 0 _aAlgorithms in Real Algebraic Geometry /
_cby Saugata Basu, Richard Pollack, Marie-Françoise Roy.
250 _aSecond Edition.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2006.
300 _aIx, 662 páginas 37 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAlgorithms and Computation in Mathematics,
_x1431-1550 ;
_v10
500 _aSpringer eBooks
505 0 _aAlgebraically Closed Fields -- Real Closed Fields -- Semi-Algebraic Sets -- Algebra -- Decomposition of Semi-Algebraic Sets -- Elements of Topology -- Quantitative Semi-algebraic Geometry -- Complexity of Basic Algorithms -- Cauchy Index and Applications -- Real Roots -- Cylindrical Decomposition Algorithm -- Polynomial System Solving -- Existential Theory of the Reals -- Quantifier Elimination -- Computing Roadmaps and Connected Components of Algebraic Sets -- Computing Roadmaps and Connected Components of Semi-algebraic Sets.
520 _aThe algorithmic problems of real algebraic geometry such as real root counting, deciding the existence of solutions of systems of polynomial equations and inequalities, finding global maxima or deciding whether two points belong in the same connected component of a semi-algebraic set appear frequently in many areas of science and engineering. In this first-ever graduate textbook on the algorithmic aspects of real algebraic geometry, the main ideas and techniques presented form a coherent and rich body of knowledge, linked to many areas of mathematics and computing. Mathematicians already aware of real algebraic geometry will find relevant information about the algorithmic aspects, and researchers in computer science and engineering will find the required mathematical background. Being self-contained the book is accessible to graduate students and even, for invaluable parts of it, to undergraduate students. This revised second edition contains several recent results, notably on discriminants of symmetric matrices, real root isolation, global optimization, quantitative results on semi-algebraic sets and the first single exponential algorithm computing their first Betti number. An index of notation has also been added.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aPollack, Richard.
_eautor
_9306951
700 1 _aRoy, Marie-Françoise.
_eautor
_9330295
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540330981
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/3-540-33099-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c295698
_d295698