000 04302nam a22003975i 4500
001 297010
003 MX-SnUAN
005 20170705134238.0
007 cr nn 008mamaa
008 150903s2006 gw | o |||| 0|eng d
020 _a9783540466505
_99783540466505
024 7 _a10.1007/11894841
_2doi
035 _avtls000349661
039 9 _a201509030739
_bVLOAD
_c201404121241
_dVLOAD
_c201404091018
_dVLOAD
_y201402071208
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ334-342
100 1 _aBalcázar, José L.
_eeditor.
_9332456
245 1 0 _aAlgorithmic Learning Theory :
_b17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006. Proceedings /
_cedited by José L. Balcázar, Philip M. Long, Frank Stephan.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2006.
300 _axiii, 393 páginas Also available online.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v4264
500 _aSpringer eBooks
505 0 _aEditors’ Introduction -- Editors’ Introduction -- Invited Contributions -- Solving Semi-infinite Linear Programs Using Boosting-Like Methods -- e-Science and the Semantic Web: A Symbiotic Relationship -- Spectral Norm in Learning Theory: Some Selected Topics -- Data-Driven Discovery Using Probabilistic Hidden Variable Models -- Reinforcement Learning and Apprenticeship Learning for Robotic Control -- Regular Contributions -- Learning Unions of ?(1)-Dimensional Rectangles -- On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle -- Active Learning in the Non-realizable Case -- How Many Query Superpositions Are Needed to Learn? -- Teaching Memoryless Randomized Learners Without Feedback -- The Complexity of Learning SUBSEQ (A) -- Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data -- Learning and Extending Sublanguages -- Iterative Learning from Positive Data and Negative Counterexamples -- Towards a Better Understanding of Incremental Learning -- On Exact Learning from Random Walk -- Risk-Sensitive Online Learning -- Leading Strategies in Competitive On-Line Prediction -- Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring -- General Discounting Versus Average Reward -- The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection -- Is There an Elegant Universal Theory of Prediction? -- Learning Linearly Separable Languages -- Smooth Boosting Using an Information-Based Criterion -- Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice -- Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence -- Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning -- Unsupervised Slow Subspace-Learning from Stationary Processes -- Learning-Related Complexity of Linear Ranking Functions.
520 _aThis book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of 5 invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning; they address topics such as query models, on-line learning, inductive inference, algorithmic forecasting, boosting, support vector machines, kernel methods, reinforcement learning, and statistical learning models.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLong, Philip M.
_eeditor.
_9332457
700 1 _aStephan, Frank.
_eeditor.
_9332458
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540466499
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/11894841
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c297010
_d297010