000 03673nam a22004215i 4500
001 297029
003 MX-SnUAN
005 20160429155358.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540684817
_99783540684817
024 7 _a10.1007/9783540684817
_2doi
035 _avtls000350040
039 9 _a201509030417
_bVLOAD
_c201405050350
_dVLOAD
_y201402071307
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.I52
100 1 _aCao, Frédéric.
_eautor
_9332488
245 1 2 _aA Theory of Shape Identification /
_cby Frédéric Cao, José-Luis Lisani, Jean-Michel Morel, Pablo Musé, Frédéric Sur.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1948
500 _aSpringer eBooks
505 0 _aExtracting Image boundaries -- Extracting Meaningful Curves from Images -- Level Line Invariant Descriptors -- Robust Shape Directions -- Invariant Level Line Encoding -- Recognizing Level Lines -- A Contrario Decision: the LLD Method -- Meaningful Matches: Experiments on LLD and MSER -- Grouping Shape Elements -- Hierarchical Clustering and Validity Assessment -- Grouping Spatially Coherent Meaningful Matches -- Experimental Results -- The SIFT Method -- The SIFT Method -- Securing SIFT with A Contrario Techniques.
520 _aRecent years have seen dramatic progress in shape recognition algorithms applied to ever-growing image databases. They have been applied to image stitching, stereo vision, image mosaics, solid object recognition and video or web image retrieval. More fundamentally, the ability of humans and animals to detect and recognize shapes is one of the enigmas of perception. The book describes a complete method that starts from a query image and an image database and yields a list of the images in the database containing shapes present in the query image. A false alarm number is associated to each detection. Many experiments will show that familiar simple shapes or images can reliably be identified with false alarm numbers ranging from 10-5 to less than 10-300. Technically speaking, there are two main issues. The first is extracting invariant shape descriptors from digital images. The second is deciding whether two shape descriptors are identifiable as the same shape or not. A perceptual principle, the Helmholtz principle, is the cornerstone of this decision. These decisions rely on elementary stochastic geometry and compute a false alarm number. The lower this number, the more secure the identification. The description of the processes, the many experiments on digital images and the simple proofs of mathematical correctness are interlaced so as to make a reading accessible to various audiences, such as students, engineers, and researchers.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLisani, José-Luis.
_eautor
_9332489
700 1 _aMorel, Jean-Michel.
_eautor
_9303401
700 1 _aMusé, Pablo.
_eautor
_9332490
700 1 _aSur, Frédéric.
_eautor
_9332491
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540684800
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-68481-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c297029
_d297029