000 03200nam a22004575i 4500
001 297072
003 MX-SnUAN
005 20160429155401.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540682684
_99783540682684
024 7 _a10.1007/9783540682684
_2doi
035 _avtls000350005
039 9 _a201509030458
_bVLOAD
_c201405050350
_dVLOAD
_y201402071306
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aFeichtinger, Hans G.
_eautor
_9332567
245 1 0 _aPseudo-Differential Operators :
_bQuantization and Signals /
_cby Hans G. Feichtinger, Bernard Helffer, Michael P. Lamoureux, Nicolas Lerner, Joachim Toft ; edited by Luigi Rodino, M. W. Wong.
246 3 _aLectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 19-24, 2006
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1949
500 _aSpringer eBooks
505 0 _aBanach Gelfand Triples for Gabor Analysis -- Four Lectures in Semiclassical Analysis for Non Self-Adjoint Problems with Applications to Hydrodynamic Instability -- An Introduction to Numerical Methods of Pseudodifferential Operators -- Some Facts About the Wick Calculus -- Schatten Properties for Pseudo-Differential Operators on Modulation Spaces.
520 _aPseudo-differential operators were initiated by Kohn, Nirenberg and Hörmander in the sixties of the last century. Beside applications in the general theory of partial differential equations, they have their roots also in the study of quantization first envisaged by Hermann Weyl thirty years earlier. Thanks to the understanding of the connections of wavelets with other branches of mathematical analysis, quantum physics and engineering, such operators have been used under different names as mathematical models in signal analysis since the last decade of the last century. The volume investigates the mathematics of quantization and signals in the context of pseudo-differential operators, Weyl transforms, Daubechies operators, Wick quantization and time-frequency localization operators. Applications to quantization, signal analysis and the modern theory of PDE are highlighted.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHelffer, Bernard.
_eautor
_9306203
700 1 _aLamoureux, Michael P.
_eautor
_9332568
700 1 _aLerner, Nicolas.
_eautor
_9332569
700 1 _aToft, Joachim.
_eautor
_9324984
700 1 _aRodino, Luigi.
_eeditor.
_9324744
700 1 _aWong, M. W.
_eeditor.
_9324985
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540682660
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-68268-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c297072
_d297072