000 05559nam a22004455i 4500
001 297093
003 MX-SnUAN
005 20160429155403.0
007 cr nn 008mamaa
008 150903s2010 gw | o |||| 0|eng d
020 _a9783540682790
_99783540682790
024 7 _a10.1007/9783540682790
_2doi
035 _avtls000350006
039 9 _a201509030458
_bVLOAD
_c201405050350
_dVLOAD
_y201402071306
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA164-167.2
100 1 _aJünger, Michael.
_eeditor.
_9328558
245 1 0 _a50 Years of Integer Programming 1958-2008 :
_bFrom the Early Years to the State-of-the-Art /
_cedited by Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, Laurence A. Wolsey.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _axx, 804 páginas 151 ilustraciones, 52 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aI The Early Years -- Solution of a Large-Scale Traveling-Salesman Problem -- The Hungarian Method for the Assignment Problem -- Integral Boundary Points of Convex Polyhedra -- Outline of an Algorithm for Integer Solutions to Linear Programs An Algorithm for the Mixed Integer Problem -- An Automatic Method for Solving Discrete Programming Problems -- Integer Programming: Methods, Uses, Computation -- Matroid Partition -- Reducibility Among Combinatorial Problems -- Lagrangian Relaxation for Integer Programming -- Disjunctive Programming -- II From the Beginnings to the State-of-the-Art -- Polyhedral Approaches to Mixed Integer Linear Programming -- Fifty-Plus Years of Combinatorial Integer Programming -- Reformulation and Decomposition of Integer Programs -- III Current Topics -- Integer Programming and Algorithmic Geometry of Numbers -- Nonlinear Integer Programming -- Mixed Integer Programming Computation -- Symmetry in Integer Linear Programming -- Semidefinite Relaxations for Integer Programming -- The Group-Theoretic Approach in Mixed Integer Programming.
520 _aIn 1958, Ralph E. Gomory transformed the field of integer programming when he published a short paper that described his cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In January of 2008, to commemorate the anniversary of Gomory's seminal paper, a special session celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. This book is based on the material presented during this session. 50 Years of Integer Programming offers an account of featured talks at the 2008 Aussois workshop, namely - Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli: Polyhedral Approaches to Mixed Integer Linear Programming - William Cook: 50+ Years of Combinatorial Integer Programming - Francois Vanderbeck and Laurence A. Wolsey: Reformulation and Decomposition of Integer Programs The book contains reprints of key historical articles together with new introductions and historical perspectives by the authors: Egon Balas, Michel Balinski, Jack Edmonds, Ralph E. Gomory, Arthur M. Geoffrion, Alan J. Hoffman & Joseph B. Kruskal, Richard M. Karp, Harold W. Kuhn, and Ailsa H. Land & Alison G. Doig. It also contains written versions of survey lectures on six of the hottest topics in the field by distinguished members of the integer programming community: - Friedrich Eisenbrand: Integer Programming and Algorithmic Geometry of Numbers - Raymond Hemmecke, Matthias Köppe, Jon Lee, and Robert Weismantel: Nonlinear Integer Programming - Andrea Lodi: Mixed Integer Programming Computation - Francois Margot: Symmetry in Integer Linear Programming - Franz Rendl: Semidefinite Relaxations for Integer Programming - Jean-Philippe P. Richard and Santanu S. Dey: The Group-Theoretic Approach to Mixed Integer Programming Integer programming holds great promise for the future, and continues to build on its foundations. Indeed, Gomory's finite cutting-plane method for the pure integer case is currently being reexamined and is showing new promise as a practical computational method. This book is a uniquely useful celebration of the past, present and future of this important and active field. Ideal for students and researchers in mathematics, computer science and operations research, it exposes mathematical optimization, in particular integer programming and combinatorial optimization, to a broad audience.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLiebling, Thomas M.
_eeditor.
_9332613
700 1 _aNaddef, Denis.
_eeditor.
_9332614
700 1 _aNemhauser, George L.
_eeditor.
_9332615
700 1 _aPulleyblank, William R.
_eeditor.
_9332616
700 1 _aReinelt, Gerhard.
_eeditor.
_9332617
700 1 _aRinaldi, Giovanni.
_eeditor.
_9332618
700 1 _aWolsey, Laurence A.
_eeditor.
_9300516
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540682745
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-68279-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c297093
_d297093