000 | 03610nam a22003855i 4500 | ||
---|---|---|---|
001 | 297168 | ||
003 | MX-SnUAN | ||
005 | 20160429155411.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 gw | o |||| 0|eng d | ||
020 |
_a9783540683490 _99783540683490 |
||
024 | 7 |
_a10.1007/9783540683490 _2doi |
|
035 | _avtls000350014 | ||
039 | 9 |
_a201509030417 _bVLOAD _c201405050350 _dVLOAD _y201402071306 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA351 | |
100 | 1 |
_aMastroianni, Giuseppe. _eautor _9313300 |
|
245 | 1 | 0 |
_aInterpolation Processes : _bBasic Theory and Applications / _cby Giuseppe Mastroianni, Gradimir V. Milovanovi?. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2008. |
|
300 |
_axiv, 444 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _a1. Constructive Elements and Approaches in Approximation Theory -- 1.1 Introduction to Approximation Theory -- 1.2 Basic Facts on Trigonometric Approximation -- 1.3 Chebyshev Systems and Interpolation -- 1.4 Interpolation by Algebraic Polynomials -- 2. Orthogonal Polynomials and Weighted Polynomial Approximation -- 2.1 Orthogonal Systems and Polynomials -- 2.2 Orthogonal Polynomials on the Real Line -- 2.3 Classical Orthogonal Polynomials -- 2.4 Nonclassical Orthogonal Polynomials -- 2.5 Weighted Polynomial Approximation -- 3. Trigonometric Approximation -- 3.1 Approximating Properties of Operators -- 3.2 Discrete Operators -- 4. Algebraic Interpolation in Uniform Norm -- 4.1 Introduction and Preliminaries -- 4.2 Optimal Systems of Nodes -- 4.3 Weighted Interpolation -- 5. Applications -- 5.1 Quadrature Formulae -- 5.2 Integral Equations -- 5.3 Moment-Preserving Approximation -- 5.4 Summation of Slowly Convergent Series -- References -- Index. | |
520 | _aThe classical books on interpolation address numerous negative results, i.e., results on divergent interpolation processes, usually constructed over some equidistant systems of nodes. The authors present, with complete proofs, recent results on convergent interpolation processes, for trigonometric and algebraic polynomials of one real variable, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. In this special, but fundamental and important field of real analysis the authors present the state of art. Some 500 references are cited, including many new results of the authors. Basic tools in this field (orthogonal polynomials, moduli of smoothness, K-functionals, etc.) as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. Beside the basic properties of the classical orthogonal polynomials the book provides new results on nonclassical orthogonal polynomials including methods for their numerical construction. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aMilovanovi?, Gradimir V. _eautor _9332741 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540683469 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-68349-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c297168 _d297168 |