000 03610nam a22003855i 4500
001 297168
003 MX-SnUAN
005 20160429155411.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540683490
_99783540683490
024 7 _a10.1007/9783540683490
_2doi
035 _avtls000350014
039 9 _a201509030417
_bVLOAD
_c201405050350
_dVLOAD
_y201402071306
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA351
100 1 _aMastroianni, Giuseppe.
_eautor
_9313300
245 1 0 _aInterpolation Processes :
_bBasic Theory and Applications /
_cby Giuseppe Mastroianni, Gradimir V. Milovanovi?.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _axiv, 444 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Monographs in Mathematics,
_x1439-7382
500 _aSpringer eBooks
505 0 _a1. Constructive Elements and Approaches in Approximation Theory -- 1.1 Introduction to Approximation Theory -- 1.2 Basic Facts on Trigonometric Approximation -- 1.3 Chebyshev Systems and Interpolation -- 1.4 Interpolation by Algebraic Polynomials -- 2. Orthogonal Polynomials and Weighted Polynomial Approximation -- 2.1 Orthogonal Systems and Polynomials -- 2.2 Orthogonal Polynomials on the Real Line -- 2.3 Classical Orthogonal Polynomials -- 2.4 Nonclassical Orthogonal Polynomials -- 2.5 Weighted Polynomial Approximation -- 3. Trigonometric Approximation -- 3.1 Approximating Properties of Operators -- 3.2 Discrete Operators -- 4. Algebraic Interpolation in Uniform Norm -- 4.1 Introduction and Preliminaries -- 4.2 Optimal Systems of Nodes -- 4.3 Weighted Interpolation -- 5. Applications -- 5.1 Quadrature Formulae -- 5.2 Integral Equations -- 5.3 Moment-Preserving Approximation -- 5.4 Summation of Slowly Convergent Series -- References -- Index.
520 _aThe classical books on interpolation address numerous negative results, i.e., results on divergent interpolation processes, usually constructed over some equidistant systems of nodes. The authors present, with complete proofs, recent results on convergent interpolation processes, for trigonometric and algebraic polynomials of one real variable, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. In this special, but fundamental and important field of real analysis the authors present the state of art. Some 500 references are cited, including many new results of the authors. Basic tools in this field (orthogonal polynomials, moduli of smoothness, K-functionals, etc.) as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. Beside the basic properties of the classical orthogonal polynomials the book provides new results on nonclassical orthogonal polynomials including methods for their numerical construction.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMilovanovi?, Gradimir V.
_eautor
_9332741
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540683469
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-68349-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c297168
_d297168