000 03553nam a22003615i 4500
001 297489
003 MX-SnUAN
005 20160429155425.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540740131
_99783540740131
024 7 _a10.1007/9783540740131
_2doi
035 _avtls000350730
039 9 _a201509030420
_bVLOAD
_c201405060239
_dVLOAD
_y201402171104
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aStruwe, Michael.
_eautor
_9333267
245 1 0 _aVariational Methods :
_bApplications to Nonlinear Partial Differential Equations and Hamiltonian Systems /
_cby Michael Struwe.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _axx, 302 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics ;
_v34
500 _aSpringer eBooks
505 0 _aThe Direct Methods in the Calculus of Variations -- Lower Semi-Continuity -- Constraints -- Compensated Compactness -- The Concentration-Compactness Principle -- Ekeland's Variational Principle -- Duality -- Minimization Problems Depending on Parameters -- Minimax Methods -- The Finite Dimensional Case -- The Palais-Smale Condition -- A General Deformation Lemma -- The Minimax Principle -- Index Theory -- The Mountain Pass Lemma and its Variants -- Perturbation Theory -- Linking -- Parameter Dependence -- Critical Points of Mountain Pass Type -- Non-Differentiable Functionals -- Ljusternik-Schnirelman Theory on Convex Sets -- Limit Cases of the Palais-Smale Condition -- Pohozaev's Non-Existence Result -- The Brezis-Nierenberg Result -- The Effect of Topology -- The Yamabe Problem -- The Dirichlet Problem for the Equation of Constant Mean Curvature -- Harmonic Maps of Riemannian Surfaces -- Appendix A -- Appendix B -- Appendix C -- References -- Index.
520 _aHilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radó. The book gives a concise introduction to variational methods and presents an overview of areas of current research in the field. The fourth edition gives a survey on new developments in the field. In particular it includes the proof for the convergence of the Yamabe flow and a detailed treatment of the phenomenon of blow-up. Also the recently discovered results for backward bubbling in the heat flow for harmonic maps or surfaces are discussed. Aside from these more significant additions, a number of smaller changes throughout the text have been made and the references have been updated.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540740124
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-74013-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c297489
_d297489