000 | 03199nam a22003855i 4500 | ||
---|---|---|---|
001 | 297552 | ||
003 | MX-SnUAN | ||
005 | 20160429155427.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 gw | o |||| 0|eng d | ||
020 |
_a9783540747758 _99783540747758 |
||
024 | 7 |
_a10.1007/9783540747758 _2doi |
|
035 | _avtls000350939 | ||
039 | 9 |
_a201509030421 _bVLOAD _c201405060243 _dVLOAD _y201402171109 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA372 | |
100 | 1 |
_aBarreira, Luis. _eautor _9316044 |
|
245 | 1 | 0 |
_aStability of Nonautonomous Differential Equations / _cby Luis Barreira, Claudia Valls. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2008. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1926 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aExponential dichotomies -- Exponential dichotomies and basic properties -- Robustness of nonuniform exponential dichotomies -- Stable manifolds and topological conjugacies -- Lipschitz stable manifolds -- Smooth stable manifolds in Rn -- Smooth stable manifolds in Banach spaces -- A nonautonomous Grobman–Hartman theorem -- Center manifolds, symmetry and reversibility -- Center manifolds in Banach spaces -- Reversibility and equivariance in center manifolds -- Lyapunov regularity and stability theory -- Lyapunov regularity and exponential dichotomies -- Lyapunov regularity in Hilbert spaces -- Stability of nonautonomous equations in Hilbert spaces. | |
520 | _aMain theme of this volume is the stability of nonautonomous differential equations, with emphasis on the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, the construction and regularity of topological conjugacies, the study of center manifolds, as well as their reversibility and equivariance properties. Most results are obtained in the infinite-dimensional setting of Banach spaces. Furthermore, the linear variational equations are always assumed to possess a nonuniform exponential behavior, given either by the existence of a nonuniform exponential contraction or a nonuniform exponential dichotomy. The presentation is self-contained and has unified character. The volume contributes towards a rigorous mathematical foundation of the theory in the infinite-dimension setting, and may lead to further developments in the field. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aValls, Claudia. _eautor _9316045 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540747741 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-74775-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c297552 _d297552 |