000 03199nam a22003855i 4500
001 297552
003 MX-SnUAN
005 20160429155427.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540747758
_99783540747758
024 7 _a10.1007/9783540747758
_2doi
035 _avtls000350939
039 9 _a201509030421
_bVLOAD
_c201405060243
_dVLOAD
_y201402171109
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA372
100 1 _aBarreira, Luis.
_eautor
_9316044
245 1 0 _aStability of Nonautonomous Differential Equations /
_cby Luis Barreira, Claudia Valls.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1926
500 _aSpringer eBooks
505 0 _aExponential dichotomies -- Exponential dichotomies and basic properties -- Robustness of nonuniform exponential dichotomies -- Stable manifolds and topological conjugacies -- Lipschitz stable manifolds -- Smooth stable manifolds in Rn -- Smooth stable manifolds in Banach spaces -- A nonautonomous Grobman–Hartman theorem -- Center manifolds, symmetry and reversibility -- Center manifolds in Banach spaces -- Reversibility and equivariance in center manifolds -- Lyapunov regularity and stability theory -- Lyapunov regularity and exponential dichotomies -- Lyapunov regularity in Hilbert spaces -- Stability of nonautonomous equations in Hilbert spaces.
520 _aMain theme of this volume is the stability of nonautonomous differential equations, with emphasis on the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, the construction and regularity of topological conjugacies, the study of center manifolds, as well as their reversibility and equivariance properties. Most results are obtained in the infinite-dimensional setting of Banach spaces. Furthermore, the linear variational equations are always assumed to possess a nonuniform exponential behavior, given either by the existence of a nonuniform exponential contraction or a nonuniform exponential dichotomy. The presentation is self-contained and has unified character. The volume contributes towards a rigorous mathematical foundation of the theory in the infinite-dimension setting, and may lead to further developments in the field. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aValls, Claudia.
_eautor
_9316045
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540747741
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-74775-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c297552
_d297552