000 | 02949nam a22003855i 4500 | ||
---|---|---|---|
001 | 297785 | ||
003 | MX-SnUAN | ||
005 | 20170705134240.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 gw | o |||| 0|eng d | ||
020 |
_a9783540772637 _99783540772637 |
||
024 | 7 |
_a10.1007/9783540772637 _2doi |
|
035 | _avtls000351395 | ||
039 | 9 |
_a201509030422 _bVLOAD _c201405060250 _dVLOAD _y201402171120 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA252.3 | |
100 | 1 |
_aKhesin, Boris. _eautor _9333548 |
|
245 | 1 | 4 |
_aThe Geometry of Infinite-Dimensional Groups / _cby Boris Khesin, Robert Wendt. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2009. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aErgebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics ; _v51 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Introduction -- I Preliminaries -- II Infinite-dimensional Lie Groups: Their Geometry, Orbits and Dynamical Systems -- III Applications of Groups: Topological and Holomorphic Gauge Theories -- Appendices -- A1 Root Systems -- A2 Compact Lie Groups -- A3 Krichever-Novikov Algebras -- A4 Kähler Structures on the Virasoro and Loop Group Coadjoint Orbits -- A5 Metrics and Diameters of the Group of Hamiltonian Diffeomorphisms -- A6 Semi-Direct Extensions of the Diffeomorphism Group and Gas Dynamics -- A7 The Drinfeld-Sokolov Reduction -- A8 Surjectivity of the Exponential Map on Pseudo-Differential Symbols -- A9 Torus Actions on the Moduli Space of Flat Connections -- Bibliography -- Index. | |
520 | _aThis monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. While infinite-dimensional groups often exhibit very peculiar features, this book describes unifying geometric ideas of the theory and gives numerous illustrations and examples, ranging from the classification of the Virasoro coadjoint orbits to knot theory, from optimal mass transport to moduli spaces of flat connections on surfaces. The text includes many exercises and open questions, and it is accessible to both students and researchers in Lie theory, geometry, and Hamiltonian systems. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aWendt, Robert. _eautor _9333736 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540772620 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-77263-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c297785 _d297785 |