000 | 02971nam a22003735i 4500 | ||
---|---|---|---|
001 | 297843 | ||
003 | MX-SnUAN | ||
005 | 20160429155438.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 gw | o |||| 0|eng d | ||
020 |
_a9783540776765 _99783540776765 |
||
024 | 7 |
_a10.1007/9783540776765 _2doi |
|
035 | _avtls000351501 | ||
039 | 9 |
_a201509030448 _bVLOAD _c201405060251 _dVLOAD _y201402171138 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
100 | 1 |
_aAwrejcewicz, Jan. _eautor _9300065 |
|
245 | 1 | 0 |
_aChaos in Structural Mechanics / _cby Jan Awrejcewicz, Vadim Anatolevich Krys'ko. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2008. |
|
300 |
_axiii, 424 páginas 195 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUnderstanding Complex Systems, _x1860-0832 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aTheory of Non-homogeneous Shells -- Static Instability of Rectangular Plates -- Vibrations of Rectangular Shells -- Dynamic Loss of Stability of Rectangular Shells -- Stability of a Closed Cylindrical Shell Subjected to an Axially Non-symmetrical Load -- Composite Shells -- Interaction of Elastic Shells and a Moving Body -- Chaotic Vibrations of Sectoria Shells -- Scenarios of Transition from Harmonic to Chaotic Motion -- Dynamics of Closed Flexible Cylindrical Shells -- Controlling Time-Spatial Chaos of Cylindrical Shells -- Chaotic Vibrations of Flexible Rectangular Shells -- Determination of Three-layered Non-linear Uncoupled Beam Dynamics with Constraints -- Bifurcation and Chaos of Dissipative Non-linear Mechanical Systems of Multi-layer Sandwich Beams -- Nonlinear Vibrations of the Euler-Bernoulli Beam Subjected to Transversal Load and Impact Actions. | |
520 | _aThis volume introduces and reviews novel theoretical approaches to modeling strongly nonlinear behaviour of either individual or interacting structural mechanical units such as beams, plates and shells or composite systems thereof. The approach draws upon the well-established fields of bifurcation theory and chaos and emphasizes the notion of control and stability of objects and systems the evolution of which is governed by nonlinear ordinary and partial differential equations. Computational methods, in particular the Bubnov-Galerkin method, are thus described in detail. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aKrys'ko, Vadim Anatolevich. _eautor _9333821 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540776758 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-77676-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c297843 _d297843 |