000 02971nam a22003735i 4500
001 297843
003 MX-SnUAN
005 20160429155438.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540776765
_99783540776765
024 7 _a10.1007/9783540776765
_2doi
035 _avtls000351501
039 9 _a201509030448
_bVLOAD
_c201405060251
_dVLOAD
_y201402171138
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aAwrejcewicz, Jan.
_eautor
_9300065
245 1 0 _aChaos in Structural Mechanics /
_cby Jan Awrejcewicz, Vadim Anatolevich Krys'ko.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _axiii, 424 páginas 195 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUnderstanding Complex Systems,
_x1860-0832
500 _aSpringer eBooks
505 0 _aTheory of Non-homogeneous Shells -- Static Instability of Rectangular Plates -- Vibrations of Rectangular Shells -- Dynamic Loss of Stability of Rectangular Shells -- Stability of a Closed Cylindrical Shell Subjected to an Axially Non-symmetrical Load -- Composite Shells -- Interaction of Elastic Shells and a Moving Body -- Chaotic Vibrations of Sectoria Shells -- Scenarios of Transition from Harmonic to Chaotic Motion -- Dynamics of Closed Flexible Cylindrical Shells -- Controlling Time-Spatial Chaos of Cylindrical Shells -- Chaotic Vibrations of Flexible Rectangular Shells -- Determination of Three-layered Non-linear Uncoupled Beam Dynamics with Constraints -- Bifurcation and Chaos of Dissipative Non-linear Mechanical Systems of Multi-layer Sandwich Beams -- Nonlinear Vibrations of the Euler-Bernoulli Beam Subjected to Transversal Load and Impact Actions.
520 _aThis volume introduces and reviews novel theoretical approaches to modeling strongly nonlinear behaviour of either individual or interacting structural mechanical units such as beams, plates and shells or composite systems thereof. The approach draws upon the well-established fields of bifurcation theory and chaos and emphasizes the notion of control and stability of objects and systems the evolution of which is governed by nonlinear ordinary and partial differential equations. Computational methods, in particular the Bubnov-Galerkin method, are thus described in detail.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aKrys'ko, Vadim Anatolevich.
_eautor
_9333821
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540776758
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-77676-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c297843
_d297843