000 | 02916nam a22003735i 4500 | ||
---|---|---|---|
001 | 298019 | ||
003 | MX-SnUAN | ||
005 | 20160429155444.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 gw | o |||| 0|eng d | ||
020 |
_a9783540773412 _99783540773412 |
||
024 | 7 |
_a10.1007/9783540773412 _2doi |
|
035 | _avtls000351411 | ||
039 | 9 |
_a201509030428 _bVLOAD _c201405060250 _dVLOAD _y201402171121 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA641-670 | |
100 | 1 |
_aJost, Jürgen. _eautor _9304435 |
|
245 | 1 | 0 |
_aRiemannian Geometry and Geometric Analysis / _cby Jürgen Jost. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2008. |
|
300 |
_axiv, 590 páginas 14 ilustraciones, 4 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aUniversitext | |
500 | _aSpringer eBooks | ||
505 | 0 | _aFoundational Material -- De Rham Cohomology and Harmonic Differential Forms -- Parallel Transport, Connections, and Covariant Derivatives -- Geodesics and Jacobi Fields -- Symmetric Spaces and Kähler Manifolds -- Morse Theory and Floer Homology -- Harmonic Maps between Riemannian Manifolds -- Harmonic maps from Riemann surfaces -- Variational Problems from Quantum Field Theory. | |
520 | _aThis established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research.This new edition introduces and explains the ideas of the parabolic methods that have recently found such a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discusses further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. The author focuses on using analytic methods in the study of some fundamental theorems in Riemannian geometry, e.g., the Hodge theorem, the Rauch comparison theorem, the Lyusternik and Fet theorem and the existence of harmonic mappings. With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome. [..] The book is made more interesting by the perspectives in various sections." Mathematical Reviews | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540773405 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-77341-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c298019 _d298019 |