000 02916nam a22003735i 4500
001 298019
003 MX-SnUAN
005 20160429155444.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540773412
_99783540773412
024 7 _a10.1007/9783540773412
_2doi
035 _avtls000351411
039 9 _a201509030428
_bVLOAD
_c201405060250
_dVLOAD
_y201402171121
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aJost, Jürgen.
_eautor
_9304435
245 1 0 _aRiemannian Geometry and Geometric Analysis /
_cby Jürgen Jost.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _axiv, 590 páginas 14 ilustraciones, 4 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext
500 _aSpringer eBooks
505 0 _aFoundational Material -- De Rham Cohomology and Harmonic Differential Forms -- Parallel Transport, Connections, and Covariant Derivatives -- Geodesics and Jacobi Fields -- Symmetric Spaces and Kähler Manifolds -- Morse Theory and Floer Homology -- Harmonic Maps between Riemannian Manifolds -- Harmonic maps from Riemann surfaces -- Variational Problems from Quantum Field Theory.
520 _aThis established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research.This new edition introduces and explains the ideas of the parabolic methods that have recently found such a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discusses further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. The author focuses on using analytic methods in the study of some fundamental theorems in Riemannian geometry, e.g., the Hodge theorem, the Rauch comparison theorem, the Lyusternik and Fet theorem and the existence of harmonic mappings. With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome. [..] The book is made more interesting by the perspectives in various sections." Mathematical Reviews  
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540773405
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-77341-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c298019
_d298019