000 03283nam a22004095i 4500
001 298486
003 MX-SnUAN
005 20170705134243.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540877028
_99783540877028
024 7 _a10.1007/9783540877028
_2doi
035 _avtls000352230
039 9 _a201509030935
_bVLOAD
_c201405060302
_dVLOAD
_y201402171156
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ334-342
100 1 _aPezzulo, Giovanni.
_eeditor.
_9333009
245 1 4 _aThe Challenge of Anticipation :
_bA Unifying Framework for the Analysis and Design of Artificial Cognitive Systems /
_cedited by Giovanni Pezzulo, Martin V. Butz, Cristiano Castelfranchi, Rino Falcone.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v5225
500 _aSpringer eBooks
505 0 _aTheory -- Introduction: Anticipation in Natural and Artificial Cognition -- The Anticipatory Approach: Definitions and Taxonomies -- Benefits of Anticipations in Cognitive Agents -- Models, Architectures, and Applications -- Anticipation in Attention -- Anticipatory, Goal-Directed Behavior -- Anticipation and Believability -- Anticipation and Emotions for Goal Directed Agents -- A Reinforcement-Learning Model of Top-Down Attention Based on a Potential-Action Map -- Anticipation by Analogy -- Anticipation in Coordination -- Endowing Artificial Systems with Anticipatory Capabilities: Success Cases.
520 _aThis book proposes a unifying approach for the analysis and design of artificial cognitive systems: The Anticipatory Approach. In 11 coherent chapters, the authors of this State-of-the-Art Survey propose a foundational view of the importance of dealing with the future, of gaining some autonomy from current environmental data, and of endogenously generating sensorimotor and abstract representations. A meaningful taxonomy for anticipatory cognitive mechanisms is put forward, which distinguishes between the types of predictions and the different influences of these predictions on actual behavior and learning. Thus a new unifying perspective on cognitive systems is given. The Anticipatory Approach described in this book will not only aid in the analysis of cognitive systems, but will also serve as an inspiration and guideline for the progressively more advanced and competent design of large, but modular, artificial cognitive systems.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aButz, Martin V.
_eeditor.
_9328706
700 1 _aCastelfranchi, Cristiano.
_eeditor.
_9334899
700 1 _aFalcone, Rino.
_eeditor.
_9329329
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540877011
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-87702-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c298486
_d298486