000 | 03180nam a22003975i 4500 | ||
---|---|---|---|
001 | 298501 | ||
003 | MX-SnUAN | ||
005 | 20170705134243.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 gw | o |||| 0|eng d | ||
020 |
_a9783540789796 _99783540789796 |
||
024 | 7 |
_a10.1007/9783540789796 _2doi |
|
035 | _avtls000351768 | ||
039 | 9 |
_a201509030930 _bVLOAD _c201405060255 _dVLOAD _y201402171145 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTA329-348 | |
100 | 1 |
_aBull, Larry. _eeditor. _9328934 |
|
245 | 1 | 0 |
_aLearning Classifier Systems in Data Mining / _cedited by Larry Bull, Ester Bernadó-Mansilla, John Holmes. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2008. |
|
300 |
_aIx, 230 páginas 65 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aStudies in Computational Intelligence, _x1860-949X ; _v125 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aLearning Classifier Systems in Data Mining: An Introduction -- Data Mining in Proteomics with Learning Classifier Systems -- Improving Evolutionary Computation Based Data-Mining for the Process Industry: The Importance of Abstraction -- Distributed Learning Classifier Systems -- Knowledge Discovery from Medical Data: An Empirical Study with XCS -- Mining Imbalanced Data with Learning Classifier Systems -- XCS for Fusing Multi-Spectral Data in Automatic Target Recognition -- Foreign Exchange Trading Using a Learning Classifier System -- Towards Clustering with Learning Classifier Systems -- A Comparative Study of Several Genetic-Based Supervised Learning Systems. | |
520 | _aJust over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data mining has sparked renewed interest in LCS. This book brings together work by a number of individuals who are demonstrating their good performance in a variety of domains. The first contribution is arranged as follows: Firstly, the main forms of LCS are described in some detail. A number of historical uses of LCS in data mining are then reviewed before an overview of the rest of the volume is presented. The rest of this book describes recent research on the use of LCS in the main areas of machine learning data mining: classification, clustering, time-series and numerical prediction, feature selection, ensembles, and knowledge discovery. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aBernadó-Mansilla, Ester. _eeditor. _9334924 |
|
700 | 1 |
_aHolmes, John. _eeditor. _9334925 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540789789 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-78979-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c298501 _d298501 |