000 | 03009nam a22004095i 4500 | ||
---|---|---|---|
001 | 298790 | ||
003 | MX-SnUAN | ||
005 | 20170705134244.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 gw | o |||| 0|eng d | ||
020 |
_a9783540794523 _99783540794523 |
||
024 | 7 |
_a10.1007/9783540794523 _2doi |
|
035 | _avtls000351870 | ||
039 | 9 |
_a201509030450 _bVLOAD _c201405060257 _dVLOAD _y201402171147 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQ337.5 | |
100 | 1 |
_aHuang, Kaizhu. _eautor _9335359 |
|
245 | 1 | 0 |
_aMachine Learning : _bModeling Data Locally and Globally / _cby Kaizhu Huang, Haiqin Yang, Irwin King, Michael Lyu. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2008. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAdvanced Topics in Science and Technology in China, _x1995-6819 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aGlobal Learning vs. Local Learning -- A General Global Learning Model: MEMPM -- Learning Locally and Globally: Maxi-Min Margin Machine -- Extension I: BMPM for Imbalanced Learning -- Extension II: A Regression Model from M4 -- Extension III: Variational Margin Settings within Local Data in Support Vector Regression -- Conclusion and Future Work. | |
520 | _aMachine Learning - Modeling Data Locally and Globally presents a novel and unified theory that tries to seamlessly integrate different algorithms. Specifically, the book distinguishes the inner nature of machine learning algorithms as either "local learning"or "global learning."This theory not only connects previous machine learning methods, or serves as roadmap in various models, but – more importantly – it also motivates a theory that can learn from data both locally and globally. This would help the researchers gain a deeper insight and comprehensive understanding of the techniques in this field. The book reviews current topics,new theories and applications. Kaizhu Huang was a researcher at the Fujitsu Research and Development Center and is currently a research fellow in the Chinese University of Hong Kong. Haiqin Yang leads the image processing group at HiSilicon Technologies. Irwin King and Michael R. Lyu are professors at the Computer Science and Engineering department of the Chinese University of Hong Kong. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aYang, Haiqin. _eautor _9335360 |
|
700 | 1 |
_aKing, Irwin. _eautor _9305918 |
|
700 | 1 |
_aLyu, Michael. _eautor _9335361 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540794516 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-79452-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c298790 _d298790 |