000 05681nam a22003975i 4500
001 298809
003 MX-SnUAN
005 20170705134244.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540874812
_99783540874812
024 7 _a10.1007/9783540874812
_2doi
035 _avtls000352199
039 9 _a201509030935
_bVLOAD
_c201405060302
_dVLOAD
_y201402171155
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ334-342
100 1 _aDaelemans, Walter.
_eeditor.
_9335388
245 1 0 _aMachine Learning and Knowledge Discovery in Databases :
_bEuropean Conference, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part II /
_cedited by Walter Daelemans, Bart Goethals, Katharina Morik.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v5212
500 _aSpringer eBooks
505 0 _aRegular Papers -- Exceptional Model Mining -- A Joint Topic and Perspective Model for Ideological Discourse -- Effective Pruning Techniques for Mining Quasi-Cliques -- Efficient Pairwise Multilabel Classification for Large-Scale Problems in the Legal Domain -- Fitted Natural Actor-Critic: A New Algorithm for Continuous State-Action MDPs -- A New Natural Policy Gradient by Stationary Distribution Metric -- Towards Machine Learning of Grammars and Compilers of Programming Languages -- Improving Classification with Pairwise Constraints: A Margin-Based Approach -- Metric Learning: A Support Vector Approach -- Support Vector Machines, Data Reduction, and Approximate Kernel Matrices -- Mixed Bregman Clustering with Approximation Guarantees -- Hierarchical, Parameter-Free Community Discovery -- A Genetic Algorithm for Text Classification Rule Induction -- Nonstationary Gaussian Process Regression Using Point Estimates of Local Smoothness -- Kernel-Based Inductive Transfer -- State-Dependent Exploration for Policy Gradient Methods -- Client-Friendly Classification over Random Hyperplane Hashes -- Large-Scale Clustering through Functional Embedding -- Clustering Distributed Sensor Data Streams -- A Novel Scalable and Data Efficient Feature Subset Selection Algorithm -- Robust Feature Selection Using Ensemble Feature Selection Techniques -- Effective Visualization of Information Diffusion Process over Complex Networks -- Actively Transfer Domain Knowledge -- A Unified View of Matrix Factorization Models -- Parallel Spectral Clustering -- Classification of Multi-labeled Data: A Generative Approach -- Pool-Based Agnostic Experiment Design in Linear Regression -- Distribution-Free Learning of Bayesian Network Structure -- Assessing Nonlinear Granger Causality from Multivariate Time Series -- Clustering Via Local Regression -- Decomposable Families of Itemsets -- Transferring Instances for Model-Based Reinforcement Learning -- A Simple Model for Sequences of Relational State Descriptions -- Semi-Supervised Boosting for Multi-Class Classification -- A Joint Segmenting and Labeling Approach for Chinese Lexical Analysis -- Transferred Dimensionality Reduction -- Multiple Manifolds Learning Framework Based on Hierarchical Mixture Density Model -- Estimating Sales Opportunity Using Similarity-Based Methods -- Learning MDP Action Models Via Discrete Mixture Trees -- Continuous Time Bayesian Networks for Host Level Network Intrusion Detection -- Data Streaming with Affinity Propagation -- Semi-supervised Discriminant Analysis Via CCCP -- Demo Papers -- A Visualization-Based Exploratory Technique for Classifier Comparison with Respect to Multiple Metrics and Multiple Domains -- Pleiades: Subspace Clustering and Evaluation -- SEDiL: Software for Edit Distance Learning -- Monitoring Patterns through an Integrated Management and Mining Tool -- A Knowledge-Based Digital Dashboard for Higher Learning Institutions -- SINDBAD and SiQL: An Inductive Database and Query Language in the Relational Model.
520 _aThis book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGoethals, Bart.
_eeditor.
_9313087
700 1 _aMorik, Katharina.
_eeditor.
_9329893
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540874805
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-87481-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c298809
_d298809