000 | 03170nam a22003735i 4500 | ||
---|---|---|---|
001 | 298851 | ||
003 | MX-SnUAN | ||
005 | 20170705134244.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 gw | o |||| 0|eng d | ||
020 |
_a9783540856344 _99783540856344 |
||
024 | 7 |
_a10.1007/9783540856344 _2doi |
|
035 | _avtls000352089 | ||
039 | 9 |
_a201509030933 _bVLOAD _c201405060300 _dVLOAD _y201402171152 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA315-316 | |
100 | 1 |
_aPytlak, Rados?aw. _eautor _9335460 |
|
245 | 1 | 0 |
_aConjugate Gradient Algorithms in Nonconvex Optimization / _cby Rados?aw Pytlak. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2009. |
|
300 |
_axxvI, 477 páginas 95 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aNonconvex Optimization and Its Applications, _x1571-568X ; _v89 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aConjugate Direction Methods for Quadratic Problems -- Conjugate Gradient Methods for Nonconvex Problems -- Memoryless Quasi-Newton Methods -- Preconditioned Conjugate Gradient Algorithms -- Limited Memory Quasi-Newton Algorithms -- The Method of Shortest Residuals and Nondifferentiable Optimization -- The Method of Shortest Residuals for Differentiable Problems -- The Preconditioned Shortest Residuals Algorithm -- Optimization on a Polyhedron -- Conjugate Gradient Algorithms for Problems with Box Constraints -- Preconditioned Conjugate Gradient Algorithms for Problems with Box Constraints -- Preconditioned Conjugate Gradient Based Reduced-Hessian Methods. | |
520 | _aThis up-to-date book is on algorithms for large-scale unconstrained and bound constrained optimization. Optimization techniques are shown from a conjugate gradient algorithm perspective. Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and limited memory quasi-Newton algorithms are presented and numerically compared to standard conjugate gradient algorithms. The special attention is paid to the methods of shortest residuals developed by the author. Several effective optimization techniques based on these methods are presented. Because of the emphasis on practical methods, as well as rigorous mathematical treatment of their convergence analysis, the book is aimed at a wide audience. It can be used by researches in optimization, graduate students in operations research, engineering, mathematics and computer science. Practitioners can benefit from numerous numerical comparisons of professional optimization codes discussed in the book. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783540856337 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-85634-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c298851 _d298851 |