000 03170nam a22003735i 4500
001 298851
003 MX-SnUAN
005 20170705134244.0
007 cr nn 008mamaa
008 150903s2009 gw | o |||| 0|eng d
020 _a9783540856344
_99783540856344
024 7 _a10.1007/9783540856344
_2doi
035 _avtls000352089
039 9 _a201509030933
_bVLOAD
_c201405060300
_dVLOAD
_y201402171152
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA315-316
100 1 _aPytlak, Rados?aw.
_eautor
_9335460
245 1 0 _aConjugate Gradient Algorithms in Nonconvex Optimization /
_cby Rados?aw Pytlak.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2009.
300 _axxvI, 477 páginas 95 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aNonconvex Optimization and Its Applications,
_x1571-568X ;
_v89
500 _aSpringer eBooks
505 0 _aConjugate Direction Methods for Quadratic Problems -- Conjugate Gradient Methods for Nonconvex Problems -- Memoryless Quasi-Newton Methods -- Preconditioned Conjugate Gradient Algorithms -- Limited Memory Quasi-Newton Algorithms -- The Method of Shortest Residuals and Nondifferentiable Optimization -- The Method of Shortest Residuals for Differentiable Problems -- The Preconditioned Shortest Residuals Algorithm -- Optimization on a Polyhedron -- Conjugate Gradient Algorithms for Problems with Box Constraints -- Preconditioned Conjugate Gradient Algorithms for Problems with Box Constraints -- Preconditioned Conjugate Gradient Based Reduced-Hessian Methods.
520 _aThis up-to-date book is on algorithms for large-scale unconstrained and bound constrained optimization. Optimization techniques are shown from a conjugate gradient algorithm perspective. Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and limited memory quasi-Newton algorithms are presented and numerically compared to standard conjugate gradient algorithms. The special attention is paid to the methods of shortest residuals developed by the author. Several effective optimization techniques based on these methods are presented. Because of the emphasis on practical methods, as well as rigorous mathematical treatment of their convergence analysis, the book is aimed at a wide audience. It can be used by researches in optimization, graduate students in operations research, engineering, mathematics and computer science. Practitioners can benefit from numerous numerical comparisons of professional optimization codes discussed in the book.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540856337
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-85634-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c298851
_d298851